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ABSTRACT
Predicting the effects of climate change on plant and animal populations is an urgent challenge for understanding the fate of bi-
odiversity under global change. At the surface, quantifying how climate drives the vital rates that underlie population dynamics 
appears simple, yet many decisions are required to connect climate to demographic data. Competing approaches have emerged 
in the literature with little consensus around best practices. Here we provide a practical guide for how to best link vital rates to 
climate for the purposes of inference and projection of population dynamics. We first describe the sources of demographic and 
climate data underlying population models. We then focus on best practices to model the relationships between vital rates and 
climate, highlighting what we can learn from mechanistic and phenomenological models. Finally, we discuss the challenges of 
prediction and forecasting in the face of uncertainty about climate-demographic relationships as well as future climate. We con-
clude by suggesting ways forward to build this field of research into one that makes robust forecasts of population persistence, 
with opportunities for synthesis across species.

1   |   Introduction

Climate is a key limiting factor of the distribution and abun-
dance of species. With unprecedented and rapid changes to 

climate, the challenge of predicting species' responses to cli-
mate change is ever more urgent. Ecologists are increasingly 
called upon to predict the fates of local populations and entire 
species—are they likely to go extinct if they are currently rare, 
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become rare if they are currently common, or become more chal-
lenging management problems if they are pests? Meeting this 
challenge requires the ability to project changes in abundance 
and distribution in response to changes in key climate drivers. 
Such changes ultimately reflect how climate drivers, through 
their direct and indirect effects, influence rates of births, indi-
vidual growth and deaths. Thus, population biology provides a 
robust framework and tools for predicting the impacts of climate 
change on biodiversity.

In principle, characterising population-level responses to cli-
mate appears straightforward. When there is information on 
how individual-level vital rates (e.g., survival, growth, reproduc-
tion, also called ‘demographic rates’) are influenced by climate, 
we can build environment-dependent demographic models that 
explicitly incorporate hypothesised climate drivers. For exam-
ple, matrix or integral projection models can use seasonal tem-
perature or snow melt date as predictors of vital rates, leading 
to inference of how climate affects population growth and vi-
ability. Climate-explicit demographic models are thus multiple 
models in one: the process model of population dynamics that 
describes how individuals move through their life cycle via re-
cruitment, survival, growth and reproduction, and the empir-
ical sub-models that describe how these vital rates depend on 
climate drivers, with the latter often in the form of statistical 
regressions. With such models, we can project how population 
dynamics will change in the face of forecasted climate change 
(Fordham et al. 2013; Williams et al. 2015; Iler et al. 2019; Ozgul 
et al. 2023; Félix-Burruel et al. 2025; Anderson et al. 2025). In 
practice, however, numerous factors related both to the pro-
cesses being modelled and methodological choices turn this 
seemingly straightforward approach into a more complex series 
of decisions. Here, we explore these decisions and their impli-
cations, and offer practical guidance. We argue that, even amid 
emerging challenges, identifying the climate drivers of demog-
raphy is tractable, and building forecasts based on these infer-
ences is necessary and worthwhile.

Environment-dependent demographic models have a long his-
tory in ecology, though until recently, environmental drivers 
have typically been modelled implicitly. For example, classic the-
ory for population dynamics in variable environments describes 
how a distribution of environmental states affects vital rates and 
fitness (Lewontin and Cohen 1969; Tuljapurkar 1989). This clas-
sic theory has led to approaches that provide a useful way to un-
derstand population viability when vital rates fluctuate, without 
assigning the cause of fluctuations (Crone et  al.  2011; Fowler 
et  al.  2024). However, while environment-implicit approaches 
may be useful to describe population dynamics in a variable but 
stationary environment, they are limited in their ability to fore-
cast responses to directional environmental change (Ehrlén and 
Morris 2015). Achieving the latter requires a transition from im-
plicit to explicit treatment of environmental drivers, where the 
causal effect of climate variables is articulated through statisti-
cal modelling.

Over the last two decades, researchers have started to more 
explicitly model environmental drivers of vital rates (Coulson 
et  al.  2001; Adler and HilleRisLambers  2008; Williams 
et  al.  2015), a departure from earlier approaches that sought 
to decipher climate signals from time series of abundance data 

(reviewed in Turchin 2013). Explicit consideration of vital rates, 
which have a more direct physiological connection to environ-
mental conditions than abundance, allows one to examine the 
demographic mechanisms through which climate variation af-
fects populations, and to identify how climate differentially af-
fects vital rates. Doing so is particularly important given that 
covariance between vital rates may buffer or exacerbate the 
impact of environmental variation (Doak et al. 2005). Yet even 
among studies that employ a bottom-up demographic approach 
linking climate to vital rates, competing methods have emerged 
in the literature with little consensus around best practices.

Therefore, our aim is to provide a practical guide for fore-
casting population dynamics under climate change through 
environment-explicit demographic modelling. We first consider 
how empiricists generate or derive data for the underlying com-
ponents of these models: demographic data and hypothesised 
climate drivers. We then present an overview of how vital rates 
can be linked to climate, highlighting what we can learn about 
responses to past, present and future climate from a spectrum 
of models ranging from mechanistic to phenomenological. We 
also discuss how these models can be used to understand and to 
make predictions with respect to climate variation across time 
and space. Finally, we dive into the challenges of prediction and 
forecasting in the face of uncertainty about current climate-
demography relationships as well as future climate change, and 
provide recommendations for ways forward.

2   |   What Goes Into a Climate-Explicit 
Demographic Model?

2.1   |   Demographic Data

Any climate-demography relationship must be defined using 
data that captures variation in demographic performance 
in parallel with variation in one or more climate variables 
that are known or hypothesised to be drivers of demography. 
Demographic performance is often measured through direct 
observation of individual-level survival, growth, reproduction 
and recruitment. For sessile organisms, these data are typically 
collected by tagging individuals and following them through 
time or, for mobile organisms, through mark-recapture meth-
ods. Vital rates can also be estimated through inverse modelling 
from changes in population abundance and structure (Félix-
Burruel et al. 2021; Paniw et al. 2023; Malchow et al. 2023), or 
from biogenic time series such as those captured in annual rings 
of trees, bivalve shells and fish otoliths (Morrongiello et al. 2012; 
Evans et al. 2021). Through any means, demographic data are 
time- and labour-intensive to collect. As a consequence, there 
is abundant demographic data for relatively few species, usu-
ally only over a few years and in relatively localised areas, and 
mostly in temperate zones (Estes et al. 2018; Römer et al. 2024).

A full demographic model accounting for all components of 
the life cycle is essential for understanding and then predicting 
population dynamics, and maximises insights gained from how 
individual vital rates respond to climate drivers. This is because 
individual vital rates, as well as the same vital rate at different 
life stages or ages, can make different contributions to popula-
tion growth and fitness (quantified by sensitivities or elasticities). 
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Individual vital rates may also covary positively or negatively 
across environmental gradients due to intrinsic physiological 
trade-offs or unique responses to exogenous drivers (Knops 
et al. 2007; Compagnoni et al. 2016). For example, negative ef-
fects of warming on survival and recruitment of alpine plants 
were compensated for by positive effects on growth (i.e., ‘demo-
graphic compensation’), buffering the decline in fitness across 
geographic variation in temperature (Doak and Morris  2010). 
For these reasons, the effects of climate on single vital rates may 
paint an incomplete and possibly misleading picture about how 
changes in climate affect population viability (Iler et al. 2019). 
There may be contexts in which it is valuable to focus on the 
climate drivers of only one vital rate when vital rate data are not 
available for the entire life cycle. For example, long time series 
of tree ring widths provide rich insight into climate drivers of 
tree growth (Fritts 1976; Clark et al. 2021), but they are typically 
not accompanied by information on survival, reproduction and 
recruitment, unless sampled in a forest plot-based monitoring 
context (Heilman et al. 2022).

2.2   |   Climate Data

The climate data that can be linked to vital rates take many 
forms, but will generally relate to or derive from temperature and 
precipitation. We use ‘climate’ to refer to long-term properties 
of temperature and precipitation distributions, such as means, 
variances and auto-correlation, as being distinct from ‘weather’, 
the short-term realisation of climate. Climate-demography rela-
tionships are typically estimated from weather data during the 
approximate times and places of demographic observations. For 
most ecological applications, weather data are directly recorded 
by instrumentation such as nearby weather stations or on-site 
sensors, or interpolated via climate model ‘downscaling’ to gen-
erate inferred weather histories at high spatial and temporal res-
olution. Through the availability of data products like PRISM, 
ClimateNA (Wang et  al.  2016), CHELSA (Karger et  al.  2017) 
and WorldClim (Fick and Hijmans 2017), downscaled weather 
data are now available for much of the terrestrial biosphere 
dating back decades or centuries—an innovation from climate 
science that is transforming ecology. Downscaled data capture 
regional trends in weather station data, usually located at 2 m 
height (Wang et al. 2016). However, plants and other sessile or-
ganisms respond directly to the climate they experience near 
the ground, which can differ from data collected above 2 m due 
to buffering from other organisms and differences in wind due 
to surface roughness (Scherrer and Körner 2010; Christiansen 
et al. 2024). Choosing the spatial scale of weather data relative 
to demographic observations is an important step, as fine-scale 
microsite conditions may be strongly predictive of demography 
but difficult to forecast, while regional conditions may have 
robust forecasts but correspond only loosely to the realised en-
vironment of the focal organism; this choice is therefore best in-
formed by the aims of the study.

Whether downscaled or measured locally, weather data typi-
cally come in the form of time series of temperature and precip-
itation that may have a temporal resolution as fine as minutes, 
hours, days or months, depending on the source. Demographic 
data are usually collected at coarser temporal resolutions, 
typically annually (but see Shriver  2016). This mismatch of 

temporal scale therefore requires decisions about whether and 
how to collapse or aggregate the weather time series to match 
the temporal resolution of demographic responses (Figure  1). 
Direct summaries include taking the mean, variance or mini-
mum/maximum of temperature or precipitation, which can be 
applied annually or seasonally (Figure 1), in addition to using 
the duration of time that conditions were below or above certain 
climate thresholds (e.g., growing degree days or freezing degree 
days). Alternatively, multivariate approaches such as principal 
components analysis (PCA) can be used to integrate multiple 
climate variables, or the same variable across different time pe-
riods, into fewer axes of variation. When the ultimate goal is to 
make future projections, considering what forecasted climate 
data are available is essential to choosing which climate vari-
ables to consider. This will be particularly true for demographic 
models driven by PCA climate axes when covariance among his-
torical climate variables differs from covariance among future 
climate variables (Louthan et al. 2021).

While temperature and precipitation are at the core of most 
climate-demography relationships, other, related variables may 
be used in climate-demography modelling as potentially more 
meaningful indicators of how the focal organisms experience cli-
mate. Derived climate variables such as drought indices, includ-
ing the Palmer Drought Severity Index (PDSI) and Standardised 
Precipitation Evapotranspiration Index (SPEI) (Palmer  1965; 
Vicente-Serrano et al. 2010), or growing or freezing degree days, 
combine several climate variables in ways that may be ecologi-
cally relevant. Some studies focus on environmental ‘indicator 
variables’ that are driven by temperature and/or precipitation 
but more directly capture their impacts on the focal organism. 
Examples include sea ice extent (Jenouvrier et  al.  2009), sea 
surface temperature (Pardo et  al.  2017), soil moisture content 
(Matlaga et  al.  2024), salinity (Lee et  al.  2022), snow depth 
(Mignatti et al. 2012) and snowmelt date (Iler et al. 2019). Using 
composite or indicator variables may more realistically or di-
rectly capture climate effects (compared to direct measurements 
of raw climate variables), even as some composite variables rely 
on models that introduce additional assumptions or uncertainty.

2.3   |   Capturing Climate Variation With 
Demographic Data

Possible approaches for quantifying or generating climate 
variation in tandem with demographic data are numerous 
(Table  1). In the demography literature, climate variation is 
most commonly captured through observational studies rep-
licated across space and/or time, where each location and/
or time period offers a unique climate sample. As with any 
observational approach, confounding variables could com-
plicate inference of the causal role of climate. In addition or 
alternatively to observational data, variation in climate can 
be generated experimentally in the lab or field. For example, 
the abundant literature on thermal performance curves is 
built on largely laboratory-based manipulations of tempera-
ture, where it is possible to subject organisms to temperatures 
more extreme than those they would experience in the field 
(Angilletta  2009; Sunday et  al.  2012). In the context of pre-
dicting climate change effects on population persistence, lab 
experiments that measure effects on multiple vital rates have 
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the most utility compared to those that focus only on one vital 
rate (Wada et al. 2024). Lab experiments necessarily trade off 
rigorous control of abiotic conditions with the realism gained 
from experiments manipulating conditions in the field, where 
other biotic and abiotic drivers of population dynamics are 
present (Anderson and Wadgymar 2020).

In the field, experiments can provide insight into expected future 
conditions, including those not represented in long-term data, 

and allow for direct manipulation of climate (Table 1). Common 
experimental manipulations of climate include warming cham-
bers (Elmendorf et al. 2012; Compagnoni and Adler 2014), snow 
removal (Griffith and Loik 2010; Anderson et al. 2025) and rain-
fall manipulation (Levine et al. 2011; Smith et al. 2024). The best 
of both worlds, and perhaps the gold standard, would combine 
experimental and observational approaches to expand coverage 
of abiotic environmental variation and infer causality through 
randomised experiments, while using observational data to 

FIGURE 1    |    Linking multidimensional climate data to model a hypothetical population with an annual demographic census. (A) Mean daily tem-
perature (°C) and (B) Total daily precipitation (mm) across 3 years (June 1, 2019—May 31, 2022, Cowichan Garry Oak Preserve, near Duncan, BC, 
Canada), with annual demographic census from 1 year (Nt) to the next (Nt+1). Adults (large circles) can grow and survive and new individuals (small 
circles) can be added to the population. Climate variables that drive vital rates might include a short time window (e.g., daily lowest minimum win-
ter temperature, shown in red), a seasonal window (e.g., spring precipitation, shown in blue) or a proxy or indicator variable derived from multiple 
climate drivers (e.g., last summer's drought index combines precipitation and temperature, shown in purple). (C) Averages for temperature across 
varying intervals shown by horizontal lines: Yearly, monthly or growing season (designated using knowledge of the system or MODIS data) to show 
different ways a daily temperature profile might be summarised.
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bolster sample sizes and capture natural patterns of variation. 
For example, Iler et  al.  (2019) combined 15 years of observa-
tional snowmelt data with snow removal experiments to build 
a model of demographic responses to advancing snowmelt in a 
Rocky Mountain perennial plant. Despite the difficulty of this 
combined approach, and recognising the potential for other driv-
ers of population dynamics to muddle or modulate the climate 
driver–vital rate relationships, experimental elements can bol-
ster causal inference.

Variation in vital rates observed across space can be driven 
by genetic rather than, or in addition to, environmental differ-
ences. Experiments provide the opportunity to decompose con-
tributions from genetic and environmental factors, although 
they may be practical only for sessile or low mobility organ-
isms. Specifically, common garden, transplant and provenance 
experiments can reveal how local adaptation modulates de-
mographic responses to climate factors across species' ranges 
(Anderson and Wadgymar 2020; Souther et al. 2022; Anderson 
et  al.  2025). For example, the universal response function ap-
proach (Chakraborty et al. 2019) estimates how climate affects 
the performance of genotypes sourced from different average 
climates, although these analyses almost always focus on a sin-
gle performance metric taken at a single time point (e.g., tree 
height or stem basal area 20 years after trial start). In a recent 
example, using a series of common gardens across an eleva-
tional gradient coupled with demographic models, Anderson 
et  al.  (2025) found evidence for strong local adaptation, sup-
ported by stochastic population models, but that most genotypes 
were adapted to cooler climates than the ones they currently ex-
perience. Ultimately, even without the ability to conduct such 
experiments, it is important to recognise the potential for ge-
netic factors, and local adaptation in particular, to influence the 
conclusions drawn from purely spatial observational data.

3   |   Linking Climate and Demography

Before building statistical models that link climate and vital 
rates, it is helpful to identify hypotheses of when in the life 
cycle and demographic census interval climate drivers might 
influence vital rates (Figure  1). Such hypotheses narrow the 
many possible links between candidate climate drivers and de-
mographic responses. A useful starting point is to draw a life 
cycle diagram with vital rates clearly identified (e.g., as in Rees 
et al. 2014). Then, with knowledge of the natural history of the 
species or related species, the climate of the ecosystem or ecore-
gion, and common performance-limiting factors for the type of 
organism (e.g., herbaceous plant, endothermic animal), consider 
which climate drivers may be most important and where in the 
life cycle their influence may be most acute (Figure 1). Doing so 
requires consideration of how to collapse the multi-dimensional 
nature of most climate data (multiple variables at high tempo-
ral resolution) and the timing of when climate drivers influence 
vital rates. We first consider the selection of climate drivers, 
highlighting the distinction between mechanistic and phenom-
enological models, and then consider approaches that can be 
used to determine the appropriate timing of climate drivers (see 
Table 2 for a range of statistical approaches, with examples, and 
Table 3 for possible challenges that may emerge during data col-
lection and model-building, with suggested solutions).

When one or a few climate drivers are known to be at the core of the 
physiological mechanisms influencing vital rates, this knowledge 
can be used in a highly mechanistic way, where the parameters that 
relate vital rates to climate drivers derive from physiological pro-
cesses. For example, thermal performance curves, a cornerstone of 
thermal ecology, have a characteristic intermediate optimum, often 
with left skew—shallow increase in performance with increas-
ing temperature below the optimum and sharp decrease above 
(Angilletta 2009), but can also skew right (e.g., in soil moisture-
limited plants (Evans et al. 2025)). Thermal performance curves 
are often estimated for one or few vital rates, which can inform 
how vital rates may change under future climate change (Nespolo 
et al. 2024), recognising that the shape and optimum can evolve 
with climate change (Stark et al. 2025). A few studies have gone 
further and assembled thermal performance curves for multiple 
vital rates into full population models (Armitage and Jones 2019; 
Richard et al. 2023; Johnson et al. 2023; Wada et al. 2024) or for 
population growth rates directly (Deutsch et al. 2008).

Where one climate driver is hypothesised or known to have tight 
links to vital rates, the hypothesised driver can be incorporated into 
purely statistical vital rate models that capture the influence in a 
phenomenological way (i.e., not derived from physiological mecha-
nisms). Climate-demography studies have used regression models 
to capture effects of known or hypothesised driver variables such 
as snowmelt date on alpine plants (Iler et al. 2019; Campbell 2019), 
sea ice melt date on seabirds (Jenouvrier et al. 2009, 2020), El Niño 
Southern Oscillation index (ENSO) on desert plants (Félix-Burruel 
et al. 2021, 2025), and water availability index and growing degree 
day on temperate forests (Kunstler et  al.  2011, 2021). Estimated 
regression coefficients may not have a well-established physiolog-
ical interpretation. Yet, whether intended or not, every statistical 
model implicitly corresponds to a biological hypothesis or assump-
tion through the functional form of the model, which is why even 
‘phenomenological’ models include elements of mechanism. For 
example, including a climate driver as a simple first-order regres-
sion covariate assumes the response is strictly linearly increasing 
or decreasing with respect to the climate driver, which may not 
be physiologically sensible, depending on the range of measure-
ment and projection. In the context of linear models, incorporat-
ing climate drivers with second-order terms accommodates the 
possibility of non-monotonic responses, when sufficient data are 
available. For example, demographic response to variation in tem-
perature or precipitation is commonly modelled as a second-order 
polynomial (Miller and Compagnoni 2022; Malchow et al. 2023), 
allowing for intermediate optima that mirror a first-principles 
physiological expectation (e.g., thermal performance curve). 
Alternatively, generalised additive models using spline basis func-
tions or various machine learning methods may allow the data to 
guide the specific form of climate dependence without requiring 
a priori assumptions (Teller et al. 2016; Tenhumberg et al. 2018; 
Hindle et al. 2019; Pichler and Hartig 2023). Ultimately, the choice 
of statistical model (Table 2) requires consideration of the study 
goals (e.g., understanding or forecasting), and not only sufficient 
data, but also care in determining whether the functional form is 
biologically sensible, particularly when the goal is forecasting be-
yond the range of observations and into future climate conditions 
(Figure 3).

Where several climate drivers are thought to be candidates, 
statistics can help guide selection among a suite of candidate 
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drivers. For example, Dalgleish et al. (2011) constrained their set 
of climate predictors of vital rates in grassland perennial plants 
to climate variables from the current or previous growing season 
that were significantly correlated with random effects of year 
derived from mixed effects models, and then used AIC model 
selection on this subset of climate predictors to choose the best-
supported model. The choice of model selection criteria may 

be best guided by the aims of the study, as out-of-sample per-
formance metrics such as root mean square error (RMSE) may 
be more relevant than AIC for forecasting applications (Félix-
Burruel et  al.  2025). In another example, Ozgul et  al.  (2023) 
constrained their analyses for modelling the effects of climate 
change on grey mouse lemurs in Madagascar to six seasonal cli-
mate variables, for example, choosing maximum temperature 

TABLE 3    |    Tips and tricks for getting started with climate-demography modelling. Challenges are ordered in the table from system and climate 
data to running and interpreting models.

Challenge Potential solutions with example(s) and resources

Sites and years have a lot of 
background variation that isn't 
climate driven, as far as I can tell.

With enough replication, random effects can isolate site or year variation 
due to climate versus background spatial or temporal heterogeneity. 
If not, climate coefficient estimates will have a lot of error, and that 

may be okay as long as that uncertainty is propagated forward

I don't have climate data for my 
site(s). Should I use a downscaled 
climate product or a local weather 
station? For the latter, how far is too 
far?

First consider the study goal. For inference, proximity to a weather station is most 
important in topographically complex landscapes and microclimate data can improve 
inference (Christiansen et al. 2024). Downscaled climate data will also work fine. For 

prediction, ensure that climate projection data are downscaled in the same way.

Too many available climate 
variables, and many are highly 
correlated

Identify those that are more supported by the literature as drivers of vital rates and 
population dynamics (use a priori/natural history knowledge (Lindell et al. 2022)), 
and/or identify groups of interchangeable climate variables (due to collinearity) and 

choose a representative variable from each group. Alternatively, use a PCA to create a 
synthetic driver or two, with the caution that it's harder to forecast to future climates

Interpreting lagged and dormant 
season contributions of climate 
variables

Include lagged and dormant season climate in model selection (Tenhumberg et al. 2018; 
Evers et al. 2021, 2023; Anderson 2023). When interpreting, consider: do contributions 

make sense? Have a biological explanation? Are there potential indirect effects?

What if I only have good vital rate 
data for some life stages?

This is a common challenge for building demographic models, particularly for cryptic 
life stages, and not unique to making connections to climate. Possible solutions 

include trying a range of sensible values (Metcalf et al. 2008), using estimates from 
congeners (Moutouama et al. 2025) or using inverse estimation (González et al. 2016).

Is it okay for me to use space for time 
substitution? I have really limited 
temporal data, but I have some 
spatial replication.

Be aware that climate-demography relationships estimated across space can be the 
opposite of climate-demography relationships across time (Perret et al. 2024; Evans 

et al. 2024). Think carefully about the assumptions of space for time substitution 
(Lovell et al. 2023, SFTS; Kharouba and Williams 2024) and consider whether climate-

demography relationships should be aligned across space vs. time in your study 
species or group (same in sign, allowing SFTS) versus not. Go forward with caution!

I suspect my population is subject to 
density dependence.

Fit density-dependent models using the best data you have (e.g., total population 
numbers; spatially explicit individual locations) (Dahlgren et al. 2016; Chu et al. 2016), 

include density × climate interactions where possible (Ehrlén and Morris 2015).

Models don't converge because 
climate variables are measured on 
vastly different scales (e.g., mean 
seasonal temp and total seasonal 
precipitation)

Standardise your variables (Schielzeth 2010) and if needed, investigate other solutions 
for model convergence (Harrison et al. 2018). Alternatively, use composite variables (e.g., 
drought indices) or PCA, with the caution that it is harder to forecast to future climates

Computing power demands for 
geographic forecasts with IPMs are 
very high

Not insurmountable, but worth considering in advance how to overcome, 
could include making code more efficient, working on a super computer/

cluster (parallelisation, e.g., R package ‘parallel’), and/or decreasing granularity 
of geographic space (larger pixels) or the IPM (lower-dimension matrix).

Interactions: among climate 
variables and/or between climate 
variables and size/stage

For interactions between climate variables, could instead use PCA to collapse 
climate variables or an index that collapses them (e.g., drought index). For 

climate × size interactions, ask whether they are statistically supported and do 
the interactions make sense (Tredennick et al. 2018). Cautionary note: may need 

a lot of data to find statistical support for interactions (Gelman et al. 2020).

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 20 Ecology Letters, 2025

instead of mean temperature, because the maximum has 
changed far more than the mean in the past 25 years. This exam-
ple highlights an alternative way to select climate drivers: rather 
than focusing on biological responses, starting with historical 
or projected climate change may point to dimensions of climate 
that are changing most rapidly, and would therefore be a natural 
focus for forecasting. On the other hand, the strongest aspects of 
climate change may not be the most important climate drivers of 
demography (Czachura and Miller 2020).

After choosing a set of candidate climate drivers, one must 
consider the time window over which each might be most 
important, both in terms of the duration (e.g., month vs. sea-
son vs. year) and whether the time window coincides with or 
lags the window of demographic observation. For duration, a 
climate driver might be important over a very short time win-
dow, such as a critical winter low temperature below which an 
organism cannot survive (Tanner et  al.  2017; Lancaster and 
Humphreys 2020; Kang et al. 2025) versus integrated over an 
entire season or census interval. A vital rate might be influenced 
by a climate driver in the current census interval, or the effect of 
the climate drivers might be lagged. For example, growth from 
time t to t + 1 (i.e., 1 year later) might be influenced by precipi-
tation and/or temperature in t–1; such lagged effects have been 
documented across a range of plant and animal species (Iler 
et al. 2019; Chen et al. 2020; Evers et al. 2021; Karunarathna 
et al. 2024). For organisms that alternate between growing and 
dormant seasons (e.g., perennial herbaceous plants going dor-
mant in winter or hibernating mammals), evidence supports 
that climate during the dormant season can be an important 
contributor to vital rates (Paniw et al. 2019; Evers et al. 2021; 
Ogilvie and CaraDonna 2022; Nespolo et al. 2024), even if the 
precise mechanism is not known.

Rigorously modelling the influence of climate drivers may re-
quire consideration of more nuanced aspects of timing, beyond 
the presence or absence of lags. Given that climate data are 
typically available on a finer time scale than demographic data 
(Figure 1), a candidate climate driver can be represented as a time 
series leading up to the demographic census (e.g., daily, weekly 
or monthly precipitation over the year preceding flowering or 
breeding). The question then becomes: when during this his-
tory did the climate driver most strongly influence demographic 
outcomes? This question can be answered through temporal 
weighting of weather history, which assigns greater weights to 
periods of high influence. Weights may be defined ‘by hand’ if 
expert knowledge or insights from a climate-demography life 
cycle diagram (Figure 1) pinpoint the critical periods of influ-
ence (Hindle et al. 2019). More commonly, weights will need to 
be ‘learned’ from data through statistical inference.

Several approaches have been recently developed for inferring 
the temporal weighting of weather history from data (Table 2). 
Sliding window approaches such as ClimWin (van de Pol 
et al. 2016) use model selection criteria to compete many can-
didate models that differ in the timing and duration of tempera-
ture and precipitation effects on demographic responses. For 
example, using this approach, Lv et  al.  (2023) identified cold 
temperatures over a two-week period in the non-breeding sea-
son of a passerine bird as the main driver of decreased survival. 
Stochastic antecedent modelling (SAM), typically implemented 

in a Bayesian framework, estimates weights associated with 
each climate window preceding the observed response, thus ex-
plicitly incorporating lags and quantifying ecological ‘memory’ 
as part of model fitting (Ogle et al. 2015, Compagnoni et al. 2024). 
Unlike sliding windows, in which the influence of the climate 
covariate is turned ‘on’ (within the window) or ‘off’ (outside the 
window), SAM allows the weight of each time window to vary 
continuously and can therefore detect greater subtleties in cli-
mate influences. Peltier et al. (2018) used SAM to model climate 
drivers of tree growth (annual ring width), showing that tem-
poral weights of climate covariates were concentrated during 
the year immediately preceding ring formation, with a weaker 
signal of drought conditions 2–4 years prior. Finally, functional 
linear modelling (FLM) is conceptually similar to SAM but tem-
poral weighting is derived from a smooth spline function that 
treats time continuously rather than as discrete windows (Teller 
et al. 2016; Tenhumberg et al. 2018). Hindle et al. (2019) found 
that FLM had better predictive performance for Soay sheep de-
mography than choosing critical windows of climate influence 
a priori, but was no better than a simple, seasonally aggregated 
composite variable (winter North Atlantic Oscillation). Yet an-
other approach to explore climate effects within census intervals 
is a model that accommodates demographic and climate data 
at different temporal resolutions, such as a Cox proportional 
hazards model (also known as survival analysis), which can 
estimate the impact of daily weather on annual plant survival 
(Tomasek et al. 2019) or multi-year tree survival as a function of 
annual weather (Fortin et al. 2025).

These competing approaches for the timing of climate driver 
effects have distinct advantages and disadvantages (Table  2). 
Proportional hazard models are useful for weather events that 
occur between census intervals, but are less suited to accounting 
for long lags. Sliding windows are easy to implement and highly 
flexible for exploring all sorts of timing and lags, but the results 
may be difficult to interpret and sensitive to spurious correla-
tions. SAM and FLM may be a useful intermediate, capable of 
detecting subtle features of timing and less likely to return hard-
to-interpret time windows of climate sensitivity.

4   |   Using a Climate-Demography Model

Once climate-demography relationships have been statisti-
cally defined at the level of vital rate sub-models, the next step 
is using a population model to make inferences about how 
climate drivers influence population viability under observed 
conditions (i.e., understanding), or to make forecasts for pop-
ulation- or species-level effects of climate change (i.e., predict-
ing). What it means to ‘use the model’ will vary widely across 
applications. For the purposes of studying population viability 
in the context of climate change, key outputs will commonly 
include—but are not limited to—the asymptotic population 
growth rate λ or, when temporal variability is incorporated 
(due to climate variability and/or ‘background’ fluctuations), 
the stochastic growth rate λS. Here we discuss key consider-
ations related to validation, inference and prediction for the 
different types of model outputs.

Just as climate-demography relationships are typically in-
ferred from spatial or temporal environmental variation, a 

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



11 of 20Ecology Letters, 2025

fully parameterised climate-explicit demographic model can 
be projected across space and/or through time (Figure  2). 
Temporal projection can go in both directions, informing how 
population viability has responded to historical environmen-
tal change (‘back-casting’, e.g., Smith et al. 2005; Czachura and 
Miller 2020) or will respond to future change (classic forecasting, 
e.g., Jenouvrier et al. 2009). Spatial projections can inform suit-
able niche space across a geographic range (λ or λS ≥ 1) (Merow 
et al. 2017; Pagel et al. 2020; Schultz et al. 2022; Şen et al. 2024) 
and can be combined with temporal dynamics to backcast or 
forecast geographic shifts in suitable niche space (Malchow 
et  al.  2023; Moutouama et  al.  2025). Moutouama et  al.  (2025) 
used climate-demography relationships derived from geograph-
ically distributed common garden experiments to forecast likely 
poleward range shifts of Texas grasses. In the spatial and spa-
tiotemporal dimensions, climate-explicit demographic models 
can function as a more mechanistic alternative to species dis-
tribution models (Merow et al. 2017), quantifying potential for 
range shifts under future climate conditions based on lower-
level mechanisms of vital rate responses to the environment and 
without requiring assumptions about range equilibria (Evans 
et al. 2016; Briscoe et al. 2019). However, it is important to rec-
ognise the assumptions required to scale up models intended for 
local population dynamics to predict the dynamics across en-
tire species' ranges, particularly regarding genetic variation and 
landscape-scale processes such as disturbance, dispersal and 
connectivity (Adler et al. 2020).

Ecologists have long relied on the assumed interchangeability 
of spatial and temporal environmental variation (i.e., space-
for-time substitution, (Lovell et al. 2023)). This would imply, 
for example, that climate-demography relationships derived 
from long-term data from one population could predict spatial 

demographic variation across the species' geographic range, 
and vice versa. Recent work highlights that this assumption of 
substitutability can be strongly misleading in practice (Perret 
et al. 2024; Evans et al. 2024; Kharouba and Williams 2024). 
Central among the reasons for this is local adaptation, which 
may alter the climate optima or tolerance breadth of differ-
ent populations and make inference from spatial sampling a 
poor proxy for local response to climate change through time, 
and vice versa (Perret et  al.  2024). Other biotic lags (‘slow’ 
processes like colonisation and extinction) can similarly 
cause inferences derived from spatial and temporal data to 
diverge (Adler et al.  2020; Stemkovski et al.  2025). Climate-
demography modelling will generally be on firmer ground 
when the dimension of model projection (spatial or temporal) 
aligns with the dimension of climate variation over which the 
model is parameterised. Where demographers have spatiotem-
poral data to infer climate responses, a useful diagnostic is 
to check whether purely spatial (e.g., among populations in a 
single year) versus purely temporal (e.g., among years within a 
single population) climate responses are similar in magnitude 
and direction. In some cases, such diagnostics may indicate 
that spatial and temporal estimates are effectively substitut-
able, such as for emperor penguins, where both spatial and 
temporal variation shared the same climate driver of under-
lying vital rates with matching magnitude and direction (Şen 
et al. 2025). More research is needed to better understand and 
anticipate the species and settings in which the effects of spa-
tial and temporal climate variation on demography can versus 
cannot be treated as substitutable.

Even when model parameterisation and projection are aligned 
in space or time, the domain of projection will often include en-
vironmental conditions that are poorly represented or entirely 

FIGURE 2    |    Visual summary of steps to link climate to demography from collecting the data to using the model.
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unrepresented in the parameterisation data. This is especially 
true for predicting responses to future climate, which for many 
regions will likely include conditions with no present-day an-
alogue (Feng et al. 2024). In such cases there are several ways 
in which vital rate models could be extrapolated beyond the 
bounds of observed conditions (Figure 3). First, naive extrapola-
tion beyond observed limits of a climate variable is one option, 
but it is important to visualise the extrapolated predictions to 
ensure they are biologically sensible (Owens et al. 2013; Conn 
et  al.  2015). Linear models with log-link functions or higher-
order polynomial terms, for example, can lead to wildly unre-
alistic predictions just beyond the limits of observed conditions. 
A more conservative approach would place upper and/or lower 
limits on vital rate functions, analogous to ‘clamping’ in species 
distribution models (Anderson 2013; Beck et al. 2023), so they 
cannot exceed the response at the most extreme observed val-
ues of the climate driver (Louthan et  al.  2022). Alternatively, 
physiological principles may dictate how vital rates will respond 
beyond observed conditions. For example, a vital rate may in-
crease monotonically with increasing temperature over some 
observed range but physiological principles tell us that the ef-
fects of increasing temperature must eventually become nega-
tive (Figure 3A).

Experiments provide opportunities to create no-analogue 
combinations of climate variables as a way to bridge the gap 
between current and future climate (figure  3B; Stevens and 
Latimer 2015; Kiekebusch et al. 2024), or to examine changes 
in climate variability along with changes in mean climate 
(Rudgers et  al.  2023). Finally, some of the most ecologically 
important types of climate change involve changes in the 
frequency of extreme events, such as droughts or hurricanes, 
rather than shifts in the mean or range of climate values. 
Through biassed re-sampling of observed conditions, it is pos-
sible to model changes in the frequency of extreme states such 
as drought years (Williams et  al.  2015) or low sea ice years 
(Hunter et al. 2010), even without a mechanistic understand-
ing of the effects of extreme conditions on vital rates (Morris 
and Doak  2002; Fowler et  al.  2024). Re-sampling observed 
years has the advantages of entirely avoiding extrapolation 
while preserving correlations between vital rates without hav-
ing to model them explicitly (Metcalf et al. 2015), which can be 
challenging (Compagnoni et al. 2016).

Given the central aim of predicting responses to climate 
change, it is important to validate climate-explicit models to 
gain confidence that they make reasonable predictions. Model 
‘validation’ takes on a double meaning for climate-explicit 
demographic models, because both the population model and 
the sub-models describing how vital rates depend on climate 
require validation. The vital rate sub-models (Table 2) should 
be evaluated for their predictive accuracy, ideally both in and 
out of sample, when possible (Tredennick et al. 2017; Harris 
et al. 2018). Fitted statistical models are generative, and can 
and should be used to simulate data for comparison with real 
data; this is a standard in-sample diagnostic step of a Bayesian 
workflow (i.e., ‘posterior predictive checks’) but is not limited 
to Bayesian analysis (Miller and Ellner  2025). At the level 
of the population model, predictions like the one-time-step-
ahead growth rate given recent weather conditions or climate 

niche suitability across geographic space could be evaluated 
against independent observations to assess model adequacy. 
For example, Moutouama et al. (2025) found that model pre-
dictions of climate niche suitability (where λ ≥ 1) compared fa-
vourably to independent occurrence records. However, other 
studies have found that demographic responses to climate are 
poor predictors of species' occurrence (Lee-Yaw et  al.  2022; 
Schultz et  al.  2022; Şen et  al.  2024). Diagnosing the causes 

FIGURE 3    |    Making predictions for demographic and population 
growth rate(s) under future climate change scenarios. Generic vital rate 
shown as a function of temperature. (A) Where experiments are not pos-
sible, extrapolation to forecasted temperature can take several forms: 
statistical extrapolation, which follows the functional form of the statis-
tical model; conservative bound—a threshold set based on some a priori 
knowledge; a physiological extrapolation based on expected responses 
to climate extreme. (B) Experimental manipulations can be combined 
with ambient climatevariation from spatial or temporal sampling to 
bridge the gap between observed and forecasted conditions. (C) Biassed 
re-sampling of observed conditions can examine the consequences of 
changing frequency of environmental extremes, even if climate and 
physiological mechanisms of ‘bad’ years are not known.

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



13 of 20Ecology Letters, 2025

of poor validation metrics—for example, whether mismatches 
between predicted and observed occurrence reflect a statisti-
cal issue (model mis-specification) or a biologically interest-
ing process (non-equilibrium dynamics, other influences on 
species' occurrence such as biotic interactions or disturbance) 
may itself be a substantial undertaking. The recurring, longi-
tudinal nature of much demographic research lends itself to 
iterative near-term forecasting (Dietze et al. 2018), providing 
an opportunity to train and improve vital rate and population 
models against an ever-changing backdrop of climate drivers.

Successful validation can bolster confidence in meaningful 
prediction but, to keep expectations realistic, it is worth con-
sidering which predictive targets might be more appropriate 
and achievable than others. λ and λS are ‘asymptotic’ metrics 
(predicting the long-term behaviour of a population assuming 
environmental conditions are stationary), and may be useful 
indicators of directional responses to environmental change 
(Lindell et  al.  2022) or the potential for population viability 
(λ ≥ 1) under a given set of conditions (Diez et al. 2014). The 
overall sensitivity of λ (or λS) to a climate driver reflects the 
combined sensitivities of λ (or λS) to the vital rates and the 
sensitivities of the vital rates to the climate driver (McLean 
et  al.  2016). Decomposing these sensitivities through Life 
Table Response Experiments (Caswell  2001) can neverthe-
less provide rich insight into how and why population viabil-
ity responds to environmental drivers, at least over observed 
conditions (Maldonado-Chaparro et al. 2018; Iler et al. 2019; 
Schultz et al. 2022). Doing so also illustrates the importance 
of integrating climate effects across the life cycle, as vital rates 
with high sensitivity to climate may contribute weakly to 
population growth, or vice versa. Beyond asymptotic metrics, 
near-term measures, such as transient growth rates and sen-
sitivities (Maldonado-Chaparro et al. 2018) or population size 
or extinction risk over some forecast horizon (Félix-Burruel 
et al. 2025), could be more meaningful and tractable targets 
for prediction, as climate change is creating non-stationary 
environmental variation (shifts in mean and/or variance) for 
many populations and species. Historically, population pro-
jection models do not have a stellar record of predictive accu-
racy (Crone et al. 2013); as climate-demography case studies 
accumulate, it will be interesting to see if the inclusion of 
important climate drivers helps to increase model skill and 
predictive accuracy.

As is always the case in ecological forecasting, accounting for 
uncertainty is an important part of prediction and should be 
standard practice in climate-demography forecasts. Uncertainty 
arises from model uncertainty, parameter estimation and back-
ground ‘process error’ (e.g., year-to-year and site-to-site differ-
ences that are not explained by climate), among other sources 
(Dietze  2017). Even with high confidence in parameter esti-
mates for climate-demography relationships, process error 
can contribute substantial uncertainty to ecological forecasts 
(Czachura and Miller 2020). Bayesian analysis is a common way 
to incorporate uncertainty in climate-demography contexts: be-
cause a function of a random variable is itself a random variable, 
posterior probability distributions of vital rates can be naturally 
propagated into posterior distributions of quantities derived 
from the vital rates, such as population growth rate or extinc-
tion risk (Elderd and Miller 2016; Iler et al. 2019). Bootstrapping 

is a non-Bayesian alternative that can similarly quantify uncer-
tainty (Larios et al. 2020). Finally, uncertainty about the future 
derives not only from climate-demography models, but also 
(and perhaps mainly!) from the climate change forecast itself. 
Few studies have incorporated uncertainty in the climate fore-
cast alongside uncertainty in demographic responses to climate 
drivers (Gauthier et  al.  2016; Heilman et  al.  2022; Jenouvrier 
et  al.  2025). Some of those studies suggest that the variability 
among the Global Climate Models (GCMs) in climate forecasts 
dwarfs the uncertainty associated with population responses to 
climate (Louthan et al. 2022).

5   |   Where Do We Go From Here?

Despite the myriad decisions and potential challenges described 
above, we encourage researchers to forge ahead as we urgently 
need better projections for the effects of climate change on 
biodiversity. This includes working with the demographic and 
climate data currently in hand, while considering how to supple-
ment with experiments, and starting studies with new species 
of concern. Here we offer some general guidance for climate-
demography modelling, as well as a few cautionary notes, then 
conclude with recommendations for ways to move the field 
forward.

1.	 Best practices for identifying hypothesised cli-
mate drivers that link to demography. Overall, the 
particular climate variables to use will depend on the 
goal of the study (see Table  3 for more tips for getting 
started). For studies with the aim of forecasting, select-
ing climate variables that are used in Global Circulation 
Models for future climate will be valuable. For studies 
aimed at understanding climate drivers of local popula-
tions, microclimate or local weather data should provide 
the strongest inference. To quantify how anomalous a 
climate driver is across years for a particular study sys-
tem, climate drivers can be scaled by a historical mean 
and standard deviation for each study location. Doing so 
serves two purposes. First, it is good practice to put cli-
mate drivers on the same scale in their interactions with 
vital rates (Schielzeth 2010). Second, we see an opportu-
nity to compare, with caution, coefficients of climate sen-
sitivities for different vital rates across climate drivers as 
well as across studies to ask questions across taxa about 
how the sensitivities of vital rates to climate vary in time 
and space. Caution is necessary because, depending on 
the research question, absolute climate sensitivities may 
be more meaningful; for example, when comparing re-
sponses of plants to drought across sites that vary dra-
matically in baseline precipitation, scaled climate drivers 
may be less informative. Finally, when possible, validat-
ing models, ideally with out-of-sample data, allows for 
estimating how well predictions perform, thus increas-
ing the robustness of conclusions, particularly when de-
cision making hinges on the results (Yates et al. 2023).

2.	 Climate drivers can interact with other drivers of 
demography. While here we have argued for the utility 
and urgency of determining the demographic effects of 
climate drivers, climate can of course interact with other 
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drivers, including but not limited to biotic interactions 
and disturbances (Suttle et  al.  2007; Chu et  al.  2016; 
Louthan et al. 2022). Since such interactions can modify 
the effects of climate on demography, knowing the nat-
ural history of a system and quantifying the effects of 
other drivers where possible is important. At the same 
time, when it is not possible to quantify non-climatic 
drivers, researchers can proceed, while taking caution 
when interpreting results. Even when the overall current 
trends, for example, population dynamics, are well de-
scribed, the underlying mechanisms that led to a statisti-
cally supported link between climate and vital rates may 
be incorrectly identified, which would limit our ability to 
predict future population dynamics when relationships 
with non-climatic drivers change.

3.	 Check for physiological sensibility. All model builders 
need to consider whether the models they are fitting for 
vital rates are physiologically sensible. This consideration 
is critical regardless of how much data or prior knowledge 
one might have for the link between physiology and cli-
mate. This link is explicitly built in for more mechanis-
tic models, but lacking for purely statistical approaches, 
which can include climate responses that are overly sim-
plistic (e.g., unbounded linear functions from univariate 
regressions) or overly complicated (e.g., step functions 
from machine learning algorithms). When more phenom-
enological models are used for forecasting, this will mean 
considering, for example, what happens when the model 
extrapolates to more extreme conditions and using data 
and common sense to determine if the extrapolation is sen-
sible (Figure 3A).

4.	 Avoid fishing expeditions while staying open to unex-
pected results. For many researchers, the steps of choos-
ing candidate climate driver(s) and how they are integrated 
across which seasons and with which lags could be daunt-
ing. Despite the challenges, we caution researchers to avoid 
‘fishing expeditions’, such as comparing all possible models 
(which could number in the hundreds or thousands) with 
a model selection approach. On the flip side, we encourage 
researchers to wield their prior knowledge with humility; 
that is to allow themselves to be surprised by unanticipated 
connections, thus opening up new hypotheses to evaluate. 
One way to balance these considerations is to use the cli-
mate—life cycle diagram approach (Figure 1) to guide the 
exploration of biologically reasonable possibilities.

Among all the idiosyncrasies in how populations and species 
respond to climate and in how ecologists construct models that 
link climate to population dynamics, we urge researchers to 
seize the opportunities to make this field more synthetic and 
comparative. One initial way forward is to build vital rate mod-
els with standardised climate variables, and then in population 
models, compare sensitivities of vital rates to changes in climate, 
and finally to compare sensitivities to climate across taxa. Effects 
of climate change are predicted to be larger when climate sen-
sitivities align with the vital rates that are most strongly drivng 
population dynamics (McLean et al. 2016), such as survival and 
growth of long-lived species and those on the slow end of the 
life history continuum. We can evaluate this prediction (and 
the converse, that species with fast life histories should respond 
more strongly to climate change when climate drivers have the 

largest effects on reproduction) drawing on data from across 
taxa. Comparative demography is already a well-developed field 
(Franco and Silvertown 2004; Salguero-Gómez et al. 2016); we 
see an opportunity to extend the success of comparative demog-
raphy to comparative climate-demography.

A next step is to ask questions about tipping points at which 
populations will become critically and negatively affected by cli-
mate change, for example, temperatures where λs ≤ 1 (Doak and 
Morris  2010). Tipping points can be identified from phenome-
nological or mechanistic models, and may result from a nonlin-
ear relationship between one vital rate and a climate variable, or 
where demographic compensation among vital rates is insuffi-
cient to maintain λ ≥ 1. Next questions include: How common 
are tipping points and at what level of climate anomaly do they 
occur? Are tipping points stronger with respect to temperature 
versus precipitation and how does that vary by biome? Are 
certain vital rates more likely to be involved in tipping points 
and/or demographic compensation? Do certain vital rates tend 
to be impacted ‘first’ (with less extreme climates) than others, 
and does that relate to life history? Due to selection, vital rates 
with low variability tend to have the largest eigenvalue elastic-
ities (Pfister  1998), suggesting that those vital rates should be 
first to respond, but as historical conditions are left behind, does 
this relationship hold? Although we may not yet have the data, 
and recognise that identifying tipping points may sometimes be 
elusive (Hillebrand et al. 2020), we can work toward answers to 
these questions that will inform our predictions not only for well-
studied species, but also for populations and species for which 
we have sparse to no data.

Another way forward for synthesis studies is with a focus on 
linking physiology to demography to population models, a 
realm where we lack theory beyond that surrounding thermal 
performance curves. We need to know how and whether phys-
iological expectations for vital rate responses to environmental 
indicator variables (e.g., thermal performance curves, growing 
degree days based on microclimatic measurements) perform 
better than predictors such as temperature and precipitation for 
making forecasts. Even within a population, individuals may 
have different thermal performance curves (Stark et al. 2025), 
leading to the question and drawing on the literature of in-
dividual heterogeneity in demography (Kendall et  al.  2011; 
Vindenes and Langangen 2015), do individuals within the same 
population have different responses to climate? And if so, how 
much does that affect population and species-level responses to 
changes in climate? Clearly, genetic variation is one source of 
individual heterogeneity, which sets the stage for evolutionary 
rescue to result in different outcomes than might be predicted 
by a purely ecological forecast (Olazcuaga et al. 2023). Finally, 
although we are beginning to accumulate studies demonstrat-
ing that microsite conditions can be important drivers of popu-
lation dynamics (Oldfather and Ackerly 2019; Ray et al. 2023), 
in general, we do not yet know how site and microsite condi-
tions might mediate or exacerbate the effects of climatic anom-
alies (Nicolè et al. 2011).

In sum, we see a new synthetic field just beginning to develop that 
will identify where to expect strong links between climate driv-
ers of populations and species, and thus where to expect strong 
effects of the rapidly changing climate. As this field develops, 
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we encourage researchers to make predictions for how climate 
change will affect species of concern. The most robust predic-
tions will come from models that are validated and quantify 
sources of uncertainty. We remain optimistic that collectively 
these contributions will lead to not only better understanding 
and prediction, but more effective management strategies to 
mitigate the effects of climate change on biodiversity.

Author Contributions

All authors are members of a working group that developed the con-
tent of this article over a 2-day meeting. J.L.W. and T.E.X.M. organised 
the working group and drafted the manuscript. All authors contributed 
edits in preparation for manuscript submission.

Acknowledgements

We are grateful for the Rice University Creative Ventures fund that 
supported our working group, where ideas for this paper came to-
gether. Additional funding support came from the Natural Sciences and 
Engineering Research Council of Canada (Discovery Grant to J.L.W.), 
US National Science Foundation (DEB-2208857, DEB-2225027, and 
Sevilleta LTER (DEB-1655499 and DEB-1748133) to T.E.X.M.; DEB-
2413626 to M.L.D.; DEB-2335906 to A.M.L.; DEB-2311414 to A.L.A. 
and S.N.S.), and US Department of Agriculture's National Institute of 
Food and Agriculture Research Capacity Fund (HATCH no. 7002993 
to S.N.S. and no. 7004646 to W.K.P.). We thank Carla Urquhart, Robin 
Bradley Juliet Kiester, and two anonymous reviewers for comments on 
an earlier version of this manuscript.

Data Availability Statement

The climate data and code used to generate Figure 1 are openly avail-
able on Zenodo: https://​zenodo.​org/​recor​ds/​17407813.

Peer Review

The peer review history for this article is available at https://​www.​webof​
scien​ce.​com/​api/​gatew​ay/​wos/​peer-​review/​10.​1111/​ele.​70283​.

References

Adler, P. B., and J. HilleRisLambers. 2008. “The Influence of Climate 
and Species Composition on the Population Dynamics of Ten Prairie 
Forbs.” Ecology 89: 3049–3060.

Adler, P. B., E. P. White, and M. H. Cortez. 2020. “Matching the Forecast 
Horizon With the Relevant Spatial and Temporal Processes and Data 
Sources.” Ecography 43: 1729–1739.

Almeida, A. C., J. J. Landsberg, and P. J. Sands. 2004. “Parameterisation 
of 3-PG Model for Fast-Growing Eucalyptus grandis Plantations.” Forest 
Ecology and Management 193: 179–195.

Amarasekare, P., and C. Johnson. 2017. “Evolution of Thermal Reaction 
Norms in Seasonally Varying Environments.” American Naturalist 189: 
E31–E45.

Anderson, J. T. 2023. “The Consequences of Winter Climate Change for 
Plant Performance.” American Journal of Botany 110: e16252.

Anderson, J. T., M. L. DeMarche, D. A. Denney, I. Breckheimer, J. 
Santangelo, and S. M. Wadgymar. 2025. “Adaptation and Gene Flow 
Are Insufficient to Rescue a Montane Plant Under Climate Change.” 
Science 388: 525–531.

Anderson, J. T., and S. M. Wadgymar. 2020. “Climate Change Disrupts 
Local Adaptation and Favours Upslope Migration.” Ecology Letters 23: 
181–192.

Anderson, R. P. 2013. “A Framework for Using Niche Models to Estimate 
Impacts of Climate Change on Species Distributions.” Annals of the New 
York Academy of Sciences 1297: 8–28.

Angert, A. L. 2009. “The Niche, Limits to Species' Distributions, and 
Spatiotemporal Variation in Demography Across the Elevation Ranges 
of Two Monkeyflowers.” Proceedings of the National Academy of 
Sciences 106: 19693–19698.

Angilletta, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical 
Synthesis. Oxford Academic.

Armitage, D. W., and S. E. Jones. 2019. “Negative Frequency-Dependent 
Growth Underlies the Stable Coexistence of Two Cosmopolitan Aquatic 
Plants.” Ecology 100: e02657.

Beck, J., A. Waananen, and S. Wagenius. 2023. “Habitat Fragmentation 
Decouples Fire-Stimulated Flowering From Plant Reproductive 
Fitness.” Proceedings of the National Academy of Sciences of the United 
States of America 120: e2306967120.

Briscoe, N. J., J. Elith, R. Salguero-Gómez, et  al. 2019. “Forecasting 
Species Range Dynamics With Process-Explicit Models: Matching 
Methods to Applications.” Ecology Letters 22: 1940–1956.

Buckley, L. B., and J. G. Kingsolver. 2021. “Evolution of Thermal 
Sensitivity in Changing and Variable Climates.” Annual Review of 
Ecology, Evolution, and Systematics 52: 563–586.

Campbell, D. R. 2019. “Early Snowmelt Projected to Cause Population 
Decline in a Subalpine Plant.” Proceedings of the National Academy of 
Sciences 116: 12901–12906.

Caswell, H. 2001. Matrix Population Models: Construction, Analysis, 
and Interpretation. 2nd ed. Sinauer Associates.

Chakraborty, D., S. Schueler, M. J. Lexer, and T. Wang. 2019. “Genetic 
Trials Improve the Transfer of Douglas-Fir Distribution Models Across 
Continents.” Ecography 42: 88–101.

Chen, X., X. Cheng, B. Zhang, et al. 2020. “Lagged Response of Adélie 
Penguin (Pygoscelis adeliae) Abundance to Environmental Variability 
in the Ross Sea, Antarctica.” Polar Biology 43: 1769–1781.

Christiansen, D. M., G. Römer, J. P. Dahlgren, et  al. 2024.  
“High-Resolution Data Are Necessary to Understand the Effects of 
Climate on Plant Population Dynamics of a Forest Herb.” Ecology 105: 
e4191.

Chu, C., A. R. Kleinhesselink, K. M. Havstad, et al. 2016. “Direct Effects 
Dominate Responses to Climate Perturbations in Grassland Plant 
Communities.” Nature Communications 7: 11766.

Clark, J. S., R. Andrus, M. Aubry-Kientz, et  al. 2021. “Continent-
Wide Tree Fecundity Driven by Indirect Climate Effects.” Nature 
Communications 12: 1242.

Compagnoni, A., and P. B. Adler. 2014. “Warming, Soil Moisture, and 
Loss of Snow Increase Bromus tectorum's Population Growth Rate.” 
Elementa: Science of the Anthropocene 2: e000020.

Compagnoni, A., A. J. Bibian, B. M. Ochocki, et al. 2016. “The Effect of 
Demographic Correlations on the Stochastic Population Dynamics of 
Perennial Plants.” Ecological Monographs 86: 480–494.

Compagnoni, A., D. Childs, T. M. Knight, and R. Salguero-Gómez. 
2024. “Antecedent Effect Models as an Exploratory Tool to Link Climate 
Drivers to Herbaceous Perennial Population Dynamics Data.” Ecology 
and Evolution 14: e70484.

Conn, P. B., D. S. Johnson, and P. L. Boveng. 2015. “On Extrapolating 
Past the Range of Observed Data When Making Statistical Predictions 
in Ecology.” PLoS One 10: e0141416.

Cooper, E. B., L. J. N. Brent, N. Snyder-Mackler, and J. P. Higham. 2024. 
“Demography and Climate Influence Sex-Specific Survival Costs of 
Reproduction Over 60 Years in a Free Ranging Primate Population.” 
Oikos 2024: e10624.

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://zenodo.org/records/17407813
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/ele.70283
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/ele.70283


16 of 20 Ecology Letters, 2025

Coulson, T., E. A. Catchpole, S. D. Albon, et al. 2001. “Age, Sex, Density, 
Winter Weather, and Population Crashes in Soay Sheep.” Science 292: 
1528–1531.

Crone, E. E., M. M. Ellis, W. F. Morris, et al. 2013. “Ability of Matrix 
Models to Explain the Past and Predict the Future of Plant Populations.” 
Conservation Biology 27: 968–978.

Crone, E. E., E. S. Menges, M. M. Ellis, et  al. 2011. “How Do Plant 
Ecologists Use Matrix Population Models?” Ecology Letters 14: 1–8.

Csergő, A. M., R. Salguero-Gómez, O. Broennimann, et al. 2017. “Less 
Favourable Climates Constrain Demographic Strategies in Plants.” 
Ecology Letters 20: 969–980.

Czachura, K., and T. E. X. Miller. 2020. “Demographic Back-Casting 
Reveals That Subtle Dimensions of Climate Change Have Strong Effects 
on Population Viability.” Journal of Ecology 108: 2557–2570.

Dahlgren, J. P., K. Bengtsson, and J. Ehrlén. 2016. “The Demography 
of Climate-Driven and Density-Regulated Population Dynamics in a 
Perennial Plant.” Ecology 97: 899–907.

Dalgleish, H. J., D. N. Koons, M. B. Hooten, C. A. Moffet, and P. B. 
Adler. 2011. “Climate Influences the Demography of Three Dominant 
Sagebrush Steppe Plants.” Ecology 92: 75–85.

Dávila-Hernández, G., J. A. Meave, R. Muñoz, and E. J. González. 2025. 
“A Flash in the Pan? The Population Dynamics of a Dominant Pioneer 
Species in Tropical Dry Forest Succession.” Population Ecology 67: 32–44.

DeMarche, M. L., G. Bailes, L. B. Hendricks, et al. 2021. “Latitudinal 
Gradients in Population Growth Do Not Reflect Demographic 
Responses to Climate.” Ecological Applications 31: e2242.

DeMarche, M. L., D. F. Doak, and W. F. Morris. 2018. “Both Life-History 
Plasticity and Local Adaptation Will Shape Range-Wide Responses to 
Climate Warming in the Tundra Plant Silene acaulis.” Global Change 
Biology 24: 1614–1625.

Deutsch, C. A., J. J. Tewksbury, R. B. Huey, et  al. 2008. “Impacts 
of Climate Warming on Terrestrial Ectotherms Across Latitude.” 
Proceedings of the National Academy of Sciences 105: 6668–6672.

Dietze, M. C. 2017. “Prediction in Ecology: A First-Principles 
Framework.” Ecological Applications 27: 2048–2060.

Dietze, M. C., A. Fox, L. M. Beck-Johnson, et al. 2018. “Iterative Near-
Term Ecological Forecasting: Needs, Opportunities, and Challenges.” 
Proceedings of the National Academy of Sciences 115: 1424–1432.

Diez, J. M., I. Giladi, R. Warren, and H. R. Pulliam. 2014. “Probabilistic 
and Spatially Variable Niches Inferred from Demography.” Journal of 
Ecology 102: 544–554.

Doak, D. F., and W. F. Morris. 2010. “Demographic Compensation and 
Tipping Points in Climate-Induced Range Shifts.” Nature 467: 959–962.

Doak, D. F., W. F. Morris, C. Pfister, B. E. Kendall, and E. M. Bruna. 2005. 
“Correctly Estimating How Environmental Stochasticity Influences 
Fitness and Population Growth.” American Naturalist 166: E14–E21.

Ehrlén, J., and W. F. Morris. 2015. “Predicting Changes in the 
Distribution and Abundance of Species Under Environmental Change.” 
Ecology Letters 18: 303–314.

Elderd, B. D., and T. E. X. Miller. 2016. “Quantifying Demographic 
Uncertainty: Bayesian Methods for Integral Projection Models.” 
Ecological Monographs 86: 125–144.

Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, et al. 2012. “Global 
Assessment of Experimental Climate Warming on Tundra Vegetation: 
Heterogeneity Over Space and Time.” Ecology Letters 15: 164–175.

Elston, D. A., M. J. Brewer, B. Martay, et  al. 2017. “A New Approach 
to Modelling the Relationship Between Annual Population Abundance 
Indices and Weather Data.” Journal of Agricultural, Biological and 
Environmental Statistics 22: 427–445.

Estes, L., P. R. Elsen, T. Treuer, et al. 2018. “The Spatial and Temporal 
Domains of Modern Ecology.” Nature Ecology & Evolution 2: 819–826.

Evans, M. E. K., B. A. Black, D. A. Falk, C. L. Giebink, and E. L. Schultz. 
2021. “Growth Rings Across the Tree of Life: Demographic Insights 
From Biogenic Time Series Data.” In Demographic Methods Across the 
Tree of Life, edited by R. Salguero-Gomez and M. Gamelon. Oxford 
University Press.

Evans, M. E. K., S. M. N. Dey, K. A. Heilman, et  al. 2024. “Tree 
Rings Reveal the Transient Risk of Extinction Hidden Inside Climate 
Envelope Forecasts.” Proceedings of the National Academy of Sciences of 
the United States of America 121: e2315700121.

Evans, M. E. K., J. Hu, and S. T. Michaletz. 2025. “Scaling Plant 
Responses to Heat: From Molecules to the Biosphere.” Science 388: 
1167–1173.

Evans, M. E. K., C. Merow, S. Record, S. M. McMahon, and B. J. Enquist. 
2016. “Towards Process-Based Range Modeling of Many Species.” 
Trends in Ecology & Evolution 31: 860–871.

Evers, S. M., T. M. Knight, and A. Compagnoni. 2023. “The Inclusion 
of Immediate and Lagged Climate Responses Amplifies the Effect of 
Climate Autocorrelation on Long-Term Growth Rate of Populations.” 
Journal of Ecology 111: 1985–1996.

Evers, S. M., T. M. Knight, D. W. Inouye, et  al. 2021. “Lagged and 
Dormant Season Climate Better Predict Plant Vital Rates Than Climate 
During the Growing Season.” Global Change Biology 27: 1927–1941.

Félix-Burruel, R. E., E. Larios, E. J. González, and A. Búrquez. 2021. 
“Episodic Recruitment in the Saguaro Cactus Is Driven by Multidecadal 
Periodicities.” Ecology 102: e03458.

Félix-Burruel, R. E., E. Larios, E. J. González, and A. Búrquez. 
2025. “Population Decline of the Saguaro Cactus Throughout Its 
Distribution Is Associated With Climate Change.” Annals of Botany 
135: 317–328.

Feng, X., A. T. Peterson, L. J. Aguirre-López, J. R. Burger, X. Chen, 
and M. Papeş. 2024. “Rethinking Ecological Niches and Geographic 
Distributions in Face of Pervasive Human Influence in the 
Anthropocene.” Biological Reviews 99: 1481–1503.

Fick, S. E., and R. J. Hijmans. 2017. “WorldClim 2: New 1-Km Spatial 
Resolution Climate Surfaces for Global Land Areas.” International 
Journal of Climatology 37: 4302–4315.

Fordham, D. A., C. Mellin, B. D. Russell, et  al. 2013. “Population 
Dynamics Can Be More Important Than Physiological Limits for 
Determining Range Shifts Under Climate Change.” Global Change 
Biology 19: 3224–3237.

Fortin, M., J. Riofrío, L. C. de Melo, et  al. 2025. “Climate-Sensitive 
Models of Tree Mortality Based on Lifetime Analysis and Irregular 
Permanent-Plot Remeasurements.” Canadian Journal of Forest Research 
55: 1–15.

Fowler, J. C., S. Ziegler, K. D. Whitney, J. A. Rudgers, and T. E. X. Miller. 
2024. “Microbial Symbionts Buffer Hosts From the Demographic Costs 
of Environmental Stochasticity.” Ecology Letters 27: e14438.

Franco, M., and J. Silvertown. 2004. “A Comparative Demography of 
Plants Based Upon Elasticities of Vital Rates.” Ecology 85: 531–538.

Fritts, H. 1976. Tree Rings and Climate. Academic Press.

García-Callejas, D., R. Molowny-Horas, and J. Retana. 2017. “Projecting 
the Distribution and Abundance of Mediterranean Tree Species Under 
Climate Change: A Demographic Approach.” Journal of Plant Ecology 
10: 731–743.

Gauthier, G., G. Péron, J.-D. Lebreton, P. Grenier, and L. van Oudenhove. 
2016. “Partitioning Prediction Uncertainty in Climate-Dependent 
Population Models.” Proceedings of the Royal Society B: Biological 
Sciences 283: 20162353.

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



17 of 20Ecology Letters, 2025

Gelman, A., J. Hill, and A. Vehtari. 2020. “Ch 16. Design and Sample 
Size Decisions.” In Regression and Other Stories, First ed. Cambridge 
University Press.

González, E. J., C. Martorell, and B. M. Bolker. 2016. “Inverse 
Estimation of Integral Projection Model Parameters Using Time Series 
of Population-Level Data.” Methods in Ecology and Evolution 7: 147–156.

Grames, E. M., and M. L. Forister. 2024. “Sparse Modeling for Climate 
Variable Selection Across Trophic Levels.” Ecology 105: e4231.

Gremer, J. R., A. Chiono, E. Suglia, M. Bontrager, L. Okafor, and J. 
Schmitt. 2020. “Variation in the Seasonal Germination Niche Across an 
Elevational Gradient: The Role of Germination Cueing in Current and 
Future Climates.” American Journal of Botany 107: 350–363.

Griffith, A. B., and M. E. Loik. 2010. “Effects of Climate and Snow 
Depth on Bromus tectorum Population Dynamics at High Elevation.” 
Oecologia 164: 821–832.

Guyennon, A., B. Reineking, R. Salguero-Gomez, et al. 2023. “Beyond 
Mean Fitness: Demographic Stochasticity and Resilience Matter at Tree 
Species Climatic Edges.” Global Ecology and Biogeography 32: 573–585.

Harris, D. J., S. D. Taylor, and E. P. White. 2018. “Forecasting Biodiversity 
in Breeding Birds Using Best Practices.” PeerJ 6: e4278.

Harrison, X. A., L. Donaldson, M. E. Correa-Cano, et al. 2018. “A Brief 
Introduction to Mixed Effects Modelling and Multi-Model Inference in 
Ecology.” PeerJ 6: e4794.

Hefley, T. J., K. M. Broms, B. M. Brost, et al. 2017. “The Basis Function 
Approach for Modeling Autocorrelation in Ecological Data.” Ecology 98: 
632–646.

Heilman, K. A., M. C. Dietze, A. A. Arizpe, et  al. 2022. “Ecological 
Forecasting of Tree Growth: Regional Fusion of Tree-Ring and Forest 
Inventory Data to Quantify Drivers and Characterize Uncertainty.” 
Global Change Biology 28: 2442–2460.

Hillebrand, H., I. Donohue, W. S. Harpole, et al. 2020. “Thresholds for 
Ecological Responses to Global Change Do Not Emerge From Empirical 
Data.” Nature Ecology & Evolution 4: 1502–1509.

Hindle, B. J., J. G. Pilkington, J. M. Pemberton, and D. Z. Childs. 2019. 
“Cumulative Weather Effects Can Impact Across the Whole Life Cycle.” 
Global Change Biology 25: 3282–3293.

Hindle, B. J., P. F. Quintana-Ascencio, E. S. Menges, and D. Z. Childs. 
2023. “The Implications of Seasonal Climatic Effects for Managing 
Disturbance Dependent Populations Under a Changing Climate.” 
Journal of Ecology 111: 1749–1761.

Hunter, C. M., H. Caswell, M. C. Runge, E. V. Regehr, S. C. Amstrup, and 
I. Stirling. 2010. “Climate Change Threatens Polar Bear Populations: A 
Stochastic Demographic Analysis.” Ecology 91: 2883–2897.

Iler, A. M., A. Compagnoni, D. W. Inouye, et  al. 2019. “Reproductive 
Losses due to Climate Change-Induced Earlier Flowering Are Not the 
Primary Threat to Plant Population Viability in a Perennial Herb.” 
Journal of Ecology 107: 1931–1943.

Jenouvrier, S., H. Caswell, C. Barbraud, M. Holland, J. Strœve, and 
H. Weimerskirch. 2009. “Demographic Models and IPCC Climate 
Projections Predict the Decline of an Emperor Penguin Population.” 
Proceedings of the National Academy of Sciences 106: 1844–1847.

Jenouvrier, S., A. Eparvier, B. Şen, et al. 2025. “Living With Uncertainty: 
Using Multi-Model Large Ensembles to Assess Emperor Penguin Extinction 
Risk for the IUCN Red List.” Biological Conservation 305: 111037.

Jenouvrier, S., M. Holland, D. Iles, et al. 2020. “The Paris Agreement 
Objectives Will Likely Halt Future Declines of Emperor Penguins.” 
Global Change Biology 26: 1170–1184.

Johnson, C. A., R. Ren, and L. B. Buckley. 2023. “Temperature Sensitivity 
of Fitness Components Across Life Cycles Drives Insect Responses to 
Climate Change.” American Naturalist 202: 753–766.

Kang, Y., D. A. Kaplan, and M. J. Osland. 2025. “Mangrove Freeze 
Resistance and Resilience Across a Tropical-Temperate Transitional 
Zone.” Journal of Ecology 113: 94–111.

Karger, D. N., O. Conrad, J. Böhner, et al. 2017. “Climatologies at High 
Resolution for the Earth's Land Surface Areas.” Scientific Data 4: 1–20.

Karunarathna, K. A. N. K., K. Wells, and N. J. Clark. 2024. “Modelling 
Nonlinear Responses of a Desert Rodent Species to Environmental 
Change With Hierarchical Dynamic Generalized Additive Models.” 
Ecological Modelling 490: 110648.

Kendall, B. E., G. A. Fox, M. Fujiwara, and T. M. Nogeire. 2011. 
“Demographic Heterogeneity, Cohort Selection, and Population 
Growth.” Ecology 92: 1985–1993.

Kerr, N. Z., R. L. Malfi, N. M. Williams, and E. E. Crone. 2021. “Larger 
Workers Outperform Smaller Workers Across Resource Environments: 
An Evaluation of Demographic Data Using Functional Linear Models.” 
Ecology and Evolution 11: 2814–2827.

Kharouba, H. M., and J. L. Williams. 2024. “Forecasting Species' 
Responses to Climate Change Using Space-For-Time Substitution.” 
Trends in Ecology & Evolution 39: 716–725.

Kiekebusch, E., A. M. Louthan, W. F. Morris, B. R. Hudgens, and N. M. 
Haddad. 2024. “Vital Rate Responses to Temperature Lead to Butterfly 
Population Declines Under Future Warming Scenarios.” Journal of 
Insect Conservation 28: 1079–1091.

Knops, J. M. H., W. D. Koenig, and W. J. Carmen. 2007. “Negative 
Correlation Does Not Imply a Tradeoff Between Growth and 
Reproduction in California Oaks.” Proceedings of the National Academy 
of Sciences 104: 16982–16985.

Kunstler, G., C. H. Albert, B. Courbaud, et  al. 2011. “Effects of 
Competition on Tree Radial-Growth Vary in Importance but Not in 
Intensity Along Climatic Gradients.” Journal of Ecology 99: 300–312.

Kunstler, G., A. Guyennon, S. Ratcliffe, et  al. 2021. “Demographic 
Performance of European Tree Species at Their Hot and Cold Climatic 
Edges.” Journal of Ecology 109: 1041–1054.

Lancaster, L. T., and A. M. Humphreys. 2020. “Global Variation in the 
Thermal Tolerances of Plants.” Proceedings of the National Academy of 
Sciences 117: 13580–13587.

Larios, E., E. J. González, P. C. Rosen, A. Pate, and P. Holm. 2020. 
“Population Projections of an Endangered Cactus Suggest Little Impact 
of Climate Change.” Oecologia 192: 439–448.

Lazaridis, D. C., J. Verbesselt, and A. P. Robinson. 2011. “Penalized 
Regression Techniques for Prediction: A Case Study for Predicting 
Tree Mortality Using Remotely Sensed Vegetation Indices.” Canadian 
Journal of Forest Research 41: 24–34.

Lee, C. E., K. Downey, R. S. Colby, et al. 2022. “Recognizing Salinity 
Threats in the Climate Crisis.” Integrative and Comparative Biology 62: 
441–460.

Lee-Yaw, J. A., J. McCune, S. Pironon, and S. N. Sheth. 2022. “Species 
Distribution Models Rarely Predict the Biology of Real Populations.” 
Ecography 2022: e05877.

Levine, J. M., A. K. McEachern, and C. Cowan. 2011. “Seasonal Timing 
of First Rain Storms Affects Rare Plant Population Dynamics.” Ecology 
92: 2236–2247.

Lewontin, R. C., and D. Cohen. 1969. “On Population Growth in a 
Randomly Varying Environment.” Proceedings of the National Academy 
of Sciences 62: 1056–1060.

Lindell, T., J. Ehrlén, and J. P. Dahlgren. 2022. “Weather-Driven 
Demography and Population Dynamics of an Endemic Perennial Plant 
During a 34-Year Period.” Journal of Ecology 110: 582–592.

Loesberg, J. A., and J. L. Williams. 2025. “Seasonal Climate Drives 
Population Growth but Not Costs of Reproduction of a Perennial 
Wildflower.” Ecology 106: e70240.

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 of 20 Ecology Letters, 2025

Louthan, A. M., M. Keighron, E. Kiekebusch, H. Cayton, A. Terando, 
and W. F. Morris. 2022. “Climate Change Weakens the Impact of 
Disturbance Interval on the Growth Rate of Natural Populations of 
Venus Flytrap.” Ecological Monographs 92: e1528.

Louthan, A. M., J. R. Walters, A. J. Terando, V. Garcia, and W. F. Morris. 
2021. “Shifting Correlations Among Multiple Aspects of Weather 
Complicate Predicting Future Demography of a Threatened Species.” 
Ecosphere 12: e03740.

Lovell, R. S. L., S. Collins, S. H. Martin, A. L. Pigot, and A. B. Phillimore. 
2023. “Space-For-Time Substitutions in Climate Change Ecology and 
Evolution.” Biological Reviews 98: 2243–2270.

Lv, L., M. van de Pol, H. L. Osmond, Y. Liu, A. Cockburn, and L. E. B. 
Kruuk. 2023. “Winter Mortality of a Passerine Bird Increases Following 
Hotter Summers and During Winters With Higher Maximum 
Temperatures.” Science Advances 9: eabm0197.

Malchow, A.-K., F. Hartig, J. Reeg, M. Kéry, and D. Zurell. 2023. 
“Demography–Environment Relationships Improve Mechanistic 
Understanding of Range Dynamics Under Climate Change.” 
Philosophical Transactions of the Royal Society, B: Biological Sciences 
378: 20220194.

Maldonado-Chaparro, A. A., D. T. Blumstein, K. B. Armitage, and D. 
Z. Childs. 2018. “Transient LTRE Analysis Reveals the Demographic 
and Trait-Mediated Processes That Buffer Population Growth.” Ecology 
Letters 21: 1693–1703.

Matlaga, D., R. Lammerant, J. A. Hogan, et al. 2024. “Survival, Growth, 
and Functional Traits of Tropical Wet Forest Tree Seedlings Across 
an Experimental Soil Moisture Gradient in Puerto Rico.” Ecology and 
Evolution 14: e11095.

McLean, N., C. R. Lawson, D. I. Leech, and M. van de Pol. 2016. 
“Predicting When Climate-Driven Phenotypic Change Affects 
Population Dynamics.” Ecology Letters 19: 595–608.

Merow, C., S. T. Bois, J. M. Allen, Y. Xie, and J. A. Silander. 2017. 
“Climate Change Both Facilitates and Inhibits Invasive Plant Ranges 
in New England.” Proceedings of the National Academy of Sciences of the 
United States of America 114: E3276–E3284.

Metcalf, C. J. E., S. P. Ellner, D. Z. Childs, et  al. 2015. “Statistical 
Modelling of Annual Variation for Inference on Stochastic Population 
Dynamics using Integral Projection Models.” Methods in Ecology and 
Evolution 6: 1007–1017.

Metcalf, C. J. E., K. E. Rose, D. Z. Childs, A. W. Sheppard, P. J. Grubb, 
and M. Rees. 2008. “Evolution of Flowering Decisions in a Stochastic, 
Density-Dependent Environment.” Proceedings of the National Academy 
of Sciences 105: 10466–10470.

Mignatti, A., R. Casagrandi, A. Provenzale, A. von Hardenberg, and M. 
Gatto. 2012. “Sex- and Age-Structured Models for Alpine Ibex Capra 
ibex Ibex Population Dynamics.” Wildlife Biology 18: 318–332.

Miller, T. E. X., and A. Compagnoni. 2022. “Two-Sex Demography, 
Sexual Niche Differentiation, and the Geographic Range Limits of 
Texas Bluegrass (Poa arachnifera).” American Naturalist 200: 17–31.

Miller, T. E. X., and S. P. Ellner. 2025. “My, How You've Grown: A 
Practical Guide to Modeling Size Transitions for Integral Projection 
Model (IPM) Applications.” Ecology 106: e70088.

Morris, W. F., and D. F. Doak. 2002. Quantitative Conservation Biology: 
Theory and Practice of Population Viability Analysis. Sinauer Associates.

Morrongiello, J. R., and R. E. Thresher. 2015. “A Statistical Framework 
to Explore Ontogenetic Growth Variation Among Individuals and 
Populations: A Marine Fish Example.” Ecological Monographs 85: 
93–115.

Morrongiello, J. R., R. E. Thresher, and D. C. Smith. 2012. “Aquatic 
Biochronologies and Climate Change.” Nature Climate Change 2: 
849–857.

Moutouama, J. K., A. Compagnoni, and T. E. X. Miller. 2025. 
“Forecasting Range Shifts of Dioecious Plants Under Climate Change.” 
Proceedings of the National Academy of Sciences of the United States of 
America 122: e2422162122.

Nespolo, R. F., J. F. Quintero-Galvis, F. E. Fontúrbel, et al. 2024. “Climate 
Change and Population Persistence in a Hibernating Marsupial.” 
Proceedings of the Royal Society B: Biological Sciences 291: 20240266.

Nicolè, F., J. P. Dahlgren, A. Vivat, I. Till-Bottraud, and J. Ehrlén. 2011. 
“Interdependent Effects of Habitat Quality and Climate on Population 
Growth of an Endangered Plant.” Journal of Ecology 99: 1211–1218.

Oedekoven, C. S., D. A. Elston, P. J. Harrison, et al. 2017. “Attributing 
Changes in the Distribution of Species Abundance to Weather Variables 
Using the Example of British Breeding Birds.” Methods in Ecology and 
Evolution 8: 1690–1702.

Ogilvie, J. E., and P. J. CaraDonna. 2022. “The Shifting Importance of 
Abiotic and Biotic Factors Across the Life Cycles of Wild Pollinators.” 
Journal of Animal Ecology 91: 2412–2423.

Ogle, K., J. J. Barber, G. A. Barron-Gafford, et al. 2015. “Quantifying 
Ecological Memory in Plant and Ecosystem Processes.” Ecology Letters 
18: 221–235.

Olazcuaga, L., B. Lincke, S. DeLacey, L. F. Durkee, B. A. Melbourne, 
and R. A. Hufbauer. 2023. “Population Demographic History and 
Evolutionary Rescue: Influence of a Bottleneck Event.” Evolutionary 
Applications 16: 1483–1495.

Oldfather, M. F., and D. D. Ackerly. 2019. “Microclimate and 
Demography Interact to Shape Stable Population Dynamics Across the 
Range of an Alpine Plant.” New Phytologist 222: 193–205.

Oldfather, M. F., M. J. Koontz, D. F. Doak, and D. D. Ackerly. 2021. 
“Range Dynamics Mediated by Compensatory Life Stage Responses to 
Experimental Climate Manipulations.” Ecology Letters 24: 772–780.

Owens, H. L., L. P. Campbell, L. L. Dornak, et al. 2013. “Constraints on 
Interpretation of Ecological Niche Models by Limited Environmental 
Ranges on Calibration Areas.” Ecological Modelling 263: 10–18.

Ozgul, A., C. Fichtel, M. Paniw, and P. M. Kappeler. 2023. “Destabilizing 
Effect of Climate Change on the Persistence of a Short-Lived Primate.” 
Proceedings of the National Academy of Sciences of the United States of 
America 120: e2214244120.

Pagel, J., M. Treurnicht, W. J. Bond, et al. 2020. “Mismatches Between 
Demographic Niches and Geographic Distributions Are Strongest in 
Poorly Dispersed and Highly Persistent Plant Species.” Proceedings of 
the National Academy of Sciences 117: 3663–3669.

Palmer, W. C. 1965. Meteorological Drought. U.S. Department of 
Commerce, Weather Bureau.

Paniw, M., D. García-Callejas, F. Lloret, R. D. Bassar, J. Travis, and O. 
Godoy. 2023. “Pathways to Global-Change Effects on Biodiversity: New 
Opportunities for Dynamically Forecasting Demography and Species 
Interactions.” Proceedings of the Royal Society B: Biological Sciences 290: 
20221494.

Paniw, M., N. Maag, G. Cozzi, T. Clutton-Brock, and A. Ozgul. 2019. 
“Life History Responses of Meerkats to Seasonal Changes in Extreme 
Environments.” Science 363: 631–635.

Pardo, D., S. Jenouvrier, H. Weimerskirch, and C. Barbraud. 2017. 
“Effect of Extreme Sea Surface Temperature Events on the Demography 
of an Age-Structured Albatross Population.” Philosophical Transactions 
of the Royal Society, B: Biological Sciences 372: 20160143.

Peltier, D. M. P., J. J. Barber, and K. Ogle. 2018. “Quantifying Antecedent 
Climatic Drivers of Tree Growth in the Southwestern US.” Journal of 
Ecology 106: 613–624.

Perret, D. L., M. E. K. Evans, and D. F. Sax. 2024. “A Species' Response 
to Spatial Climatic Variation Does Not Predict Its Response to Climate 

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



19 of 20Ecology Letters, 2025

Change.” Proceedings of the National Academy of Sciences of the United 
States of America 121: e2304404120.

Pfister, C. A. 1998. “Patterns of Variance in Stage-Structured 
Populations: Evolutionary Predictions and Ecological Implications.” 
Proceedings of the National Academy of Sciences 95: 213–218.

Pichler, M., and F. Hartig. 2023. “Machine Learning and Deep 
Learning—A Review for Ecologists.” Methods in Ecology and Evolution 
14: 994–1016.

Ray, C. A., R. E. Kapas, Ø. H. Opedal, and B. W. Blonder. 2023. 
“Linking Microenvironment Modification to Species Interactions and 
Demography in an Alpine Plant Community.” Oikos 2023: e09235.

Reed, P. B., M. L. Peterson, L. E. Pfeifer-Meister, et  al. 2021. “Climate 
Manipulations Differentially Affect Plant Population Dynamics Within 
Versus Beyond Northern Range Limits.” Journal of Ecology 109: 664–675.

Rees, M., D. Z. Childs, and S. P. Ellner. 2014. “Building Integral 
Projection Models: A User's Guide.” Journal of Animal Ecology 83: 
528–545.

Richard, R., Y.-K. Zhang, and K.-W. Hung. 2023. “Thermal Dependence 
of Daphnia Life History Reveals Asymmetries Between Key Vital 
Rates.” Journal of Thermal Biology 115: 103653.

Römer, G., J. P. Dahlgren, R. Salguero-Gómez, I. M. Stott, and O. R. 
Jones. 2024. “Plant Demographic Knowledge Is Biased Towards Short-
Term Studies of Temperate-Region Herbaceous Perennials.” Oikos 2024: 
e10250.

Rudgers, J. A., A. Luketich, M. Bacigalupa, et al. 2023. “Infrastructure 
to Factorially Manipulate the Mean and Variance of Precipitation in the 
Field.” Ecosphere 14: e4603.

Salguero-Gómez, R., O. R. Jones, E. Jongejans, et al. 2016. “Fast–Slow 
Continuum and Reproductive Strategies Structure Plant Life-History 
Variation Worldwide.” Proceedings of the National Academy of Sciences 
113: 230–235.

Saracco, J. F., R. L. Cormier, D. L. Humple, S. Stock, R. Taylor, and R. B. 
Siegel. 2022. “Demographic Responses to Climate-Driven Variation in 
Habitat Quality Across the Annual Cycle of a Migratory Bird Species.” 
Ecology and Evolution 12: e8934.

Scherrer, D., and C. Körner. 2010. “Infra-Red Thermometry of Alpine 
Landscapes Challenges Climatic Warming Projections.” Global Change 
Biology 16: 2602–2613.

Schielzeth, H. 2010. “Simple Means to Improve the Interpretability of 
Regression Coefficients.” Methods in Ecology and Evolution 1: 103–113.

Schultz, E. L., L. Hülsmann, M. D. Pillet, et al. 2022. “Climate-Driven, 
but Dynamic and Complex? A Reconciliation of Competing Hypotheses 
for Species' Distributions.” Ecology Letters 25: 38–51.

Schwinning, S., C. J. Lortie, T. C. Esque, and L. A. DeFalco. 2022. “What 
Common-Garden Experiments Tell Us About Climate Responses in 
Plants.” Journal of Ecology 110: 986–996.

Şen, B., C. Che-Castaldo, and H. R. Akçakaya. 2024. “The Potential for 
Species Distribution Models to Distinguish Source Populations From 
Sinks.” Journal of Animal Ecology 93: 1924–1934.

Şen, B., C. Che-Castaldo, M. A. LaRue, et  al. 2025. “Temporal and 
Spatial Equivalence in Demographic Responses of Emperor Penguins 
(Aptenodytes forsteri) to Environmental Change.” Journal of Animal 
Ecology 94: 932–942.

Shriver, R. K. 2016. “Quantifying How Short-Term Environmental 
Variation Leads to Long-Term Demographic Responses to Climate 
Change.” Journal of Ecology 104: 65–78.

Smallegange, I. M., H. Caswell, M. E. M. Toorians, and A. M. de Roos. 
2017. “Mechanistic Description of Population Dynamics Using Dynamic 
Energy Budget Theory Incorporated Into Integral Projection Models.” 
Methods in Ecology and Evolution 8: 146–154.

Smith, M., H. Caswell, and P. Mettler-Cherry. 2005. “Stochastic 
Flood and Precipitation Regimes and the Population Dynamics of a 
Threatened Floodplain Plant.” Ecological Applications 15: 1036–1052.

Smith, M. D., K. D. Wilkins, M. C. Holdrege, et  al. 2024. “Extreme 
Drought Impacts Have Been Underestimated in Grasslands and 
Shrublands Globally.” Proceedings of the National Academy of Sciences 
121: e2309881120.

Souther, S., J. B. McGraw, J. D. Souther, and D. M. Waller. 2022. “Effects 
of Altered Climates on American Ginseng Population Dynamics.” 
Population Ecology 64: 47–63.

Stark, K. A., T. Clegg, J. R. Bernhardt, et  al. 2025. “Toward a More 
Dynamic Metabolic Theory of Ecology to Predict Climate Change 
Effects on Biological Systems.” American Naturalist 205: 285–305.

Stemkovski, M., J. R. Bernhardt, B. W. Blonder, et al. 2025. “Ecological 
Acclimation: A Framework to Integrate Fast and Slow Responses to 
Climate Change.” Functional Ecology 00: 1–14.

Stevens, J. T., and A. M. Latimer. 2015. “Snowpack, Fire, and Forest 
Disturbance: Interactions Affect Montane Invasions by Non-Native 
Shrubs.” Global Change Biology 21: 2379–2393.

Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2012. “Thermal Tolerance and 
the Global Redistribution of Animals.” Nature Climate Change 2: 686–690.

Suttle, K. B., M. A. Thomsen, and M. E. Power. 2007. “Species 
Interactions Reverse Grassland Responses to Changing Climate.” 
Science 315: 640–642.

Tanner, E. P., R. D. Elmore, S. D. Fuhlendorf, C. A. Davis, D. K. 
Dahlgren, and J. P. Orange. 2017. “Extreme Climatic Events Constrain 
Space Use and Survival of a Ground-Nesting Bird.” Global Change 
Biology 23: 1832–1846.

Teller, B. J., P. B. Adler, C. B. Edwards, G. Hooker, and S. P. Ellner. 
2016. “Linking Demography With Drivers: Climate and Competition.” 
Methods in Ecology and Evolution 7: 171–183.

Tenhumberg, B., E. E. Crone, S. Ramula, and A. J. Tyre. 2018. “Time-
Lagged Effects of Weather on Plant Demography: Drought and 
Astragalus scaphoides.” Ecology 99: 915–925.

Tomasek, B. J., L. T. Burghardt, and R. K. Shriver. 2019. “Filling in the 
Gaps in Survival Analysis: Using Field Data to Infer Plant Responses to 
Environmental Stressors.” Ecology 100: e02778.

Tredennick, A. T., M. B. Hooten, and P. B. Adler. 2017. “Do We Need 
Demographic Data to Forecast Plant Population Dynamics?” Methods 
in Ecology and Evolution 8: 541–551.

Tredennick, A. T., B. J. Teller, P. B. Adler, G. Hooker, and S. P. Ellner. 2018. 
“Size-By-Environment Interactions: A Neglected Dimension of Species' 
Responses to Environmental Variation.” Ecology Letters 21: 1757–1770.

Trumble, S. J., E. M. Robinson, M. Berman-Kowalewski, C. W. 
Potter, and S. Usenko. 2013. “Blue Whale Earplug Reveals Lifetime 
Contaminant Exposure and Hormone Profiles.” Proceedings of the 
National Academy of Sciences 110: 16922–16926.

Tuljapurkar, S. 1989. “An Uncertain Life: Demography in Random 
Environments.” Theoretical Population Biology 35: 227–294.

Turchin, P. 2013. Complex Population Dynamics: A Theoretical/
Empirical Synthesis (MPB-35). Princeton University Press.

van de Pol, M., L. D. Bailey, N. McLean, L. Rijsdijk, C. R. Lawson, and L. 
Brouwer. 2016. “Identifying the Best Climatic Predictors in Ecology and 
Evolution.” Methods in Ecology and Evolution 7: 1246–1257.

van der Meer, J. 2006. “An Introduction to Dynamic Energy Budget 
(DEB) Models With Special Emphasis on Parameter Estimation.” 
Journal of Sea Research 56: 85–102.

van Moorsel, S. J., E. Thébault, V. Radchuk, et  al. 2023. “Predicting 
Effects of Multiple Interacting Global Change Drivers Across Trophic 
Levels.” Global Change Biology 29: 1223–1238.

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 of 20 Ecology Letters, 2025

Viana, D. S., and J. M. Chase. 2022. “Increasing Climatic Decoupling 
of Bird Abundances and Distributions.” Nature Ecology & Evolution 6: 
1299–1306.

Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno. 2010. 
“A Multiscalar Drought Index Sensitive to Global Warming: The 
Standardized Precipitation Evapotranspiration Index.” Journal of 
Climate 23: 1696–1718.

Vindenes, Y., and Ø. Langangen. 2015. “Individual Heterogeneity in 
Life Histories and Eco-Evolutionary Dynamics.” Ecology Letters 18: 
417–432.

Wada, H., W. Choi, V. Coutts, A. Hoffman, and T. D. Steury. 2024. 
“Modeling Population Growth Under Climate Stressors Using Age-
Structured Matrix Models.” Integrative and Comparative Biology 64: 
944–952.

Wang, T., A. Hamann, D. Spittlehouse, and C. Carroll. 2016. “Locally 
Downscaled and Spatially Customizable Climate Data for Historical 
and Future Periods for North America.” PLoS One 11: e0156720.

Williams, J. L., H. Jacquemyn, B. M. Ochocki, R. Brys, and T. E. X. 
Miller. 2015. “Life History Evolution Under Climate Change and Its 
Influence on the Population Dynamics of a Long-Lived Plant.” Journal 
of Ecology 103: 798–808.

Yang, X., A. L. Angert, P. A. Zuidema, et  al. 2022. “The Role of 
Demographic Compensation in Stabilising Marginal Tree Populations 
in North America.” Ecology Letters 25: 1676–1689.

Yates, L. A., Z. Aandahl, S. A. Richards, and B. W. Brook. 2023. 
“Cross Validation for Model Selection: A Review With Examples From 
Ecology.” Ecological Monographs 93: e1557.

 14610248, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70283 by Joshua Fow

ler - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Linking Climate and Demography to Predict Population Dynamics and Persistence Under Global Change
	ABSTRACT
	1   |   Introduction
	2   |   What Goes Into a Climate-Explicit Demographic Model?
	2.1   |   Demographic Data
	2.2   |   Climate Data
	2.3   |   Capturing Climate Variation With Demographic Data

	3   |   Linking Climate and Demography
	4   |   Using a Climate-Demography Model
	5   |   Where Do We Go From Here?
	Author Contributions
	Acknowledgements
	Data Availability Statement
	Peer Review
	References


