'.) Check for updates

Ecology Letters WI LEY

ECOLOGY LETTERS [cr)
| syNTHESIS GEIEED

Linking Climate and Demography to Predict Population
Dynamics and Persistence Under Global Change

Jennifer L. Williams! © | Amy L. Angert>3 | Aldo Compagnoni* | Ali Campbell® | Megan L. DeMarche® & |
Margaret E. K. Evans’ 2 | Joshua C. Fowler® | Edgar J. Gonzalez’ © | Amy M. Iler'®® | Jenna A. Loesberg! |
Allison M. Louthan!! | Alexandra B. Martin® | Jacob K. Moutouama?® | Scott W. Nordstrom!? | William K. Petry!3 |

Bilgecan Sen'* | Seema N. Sheth®®© | Tom E. X. Miller®

!Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada | ?Department of Botany, University of British Columbia,
Vancouver, British Columbia, Canada | 3Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada | *German

Centre for Integrative Biodiversity Research (iDiv), Martin Luther University Halle-Wittenberg, Leipzig, Germany | SDepartment of BioSciences, Program
in Ecology and Evolutionary Biology, Rice University, Houston, Texas, USA | ®Department of Plant Biology, University of Georgia, Athens, Georgia,

USA | "Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA | ®Department of Environmental Studies, University of
Colorado, Boulder, Colorado, USA | “Departamento de Ecologia y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autonoma de México,
Ciudad Universitaria, Mexico City, Mexico | °Negaunee Institute of Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois,
USA | "Division of Biology, Kansas State University, Manhattan, Kansas, USA | '?Population Research Center, Portland State University, Portland,
Oregon, USA | *Department of Plant & Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA | *Appalachian Laboratory,
University of Maryland Center for Environmental Science, Frostburg, Maryland, USA

Correspondence: Jennifer L. Williams (jennifer.williams@geog.ubc.ca)
Received: 15 July 2025 | Revised: 27 October 2025 | Accepted: 21 November 2025
Editor: Pejman Rohani

Keywords: climate change | demographic model | ecological forecasting | integral projection model | matrix model | physiology | population growth |
stochastic environment

ABSTRACT

Predicting the effects of climate change on plant and animal populations is an urgent challenge for understanding the fate of bi-
odiversity under global change. At the surface, quantifying how climate drives the vital rates that underlie population dynamics
appears simple, yet many decisions are required to connect climate to demographic data. Competing approaches have emerged
in the literature with little consensus around best practices. Here we provide a practical guide for how to best link vital rates to
climate for the purposes of inference and projection of population dynamics. We first describe the sources of demographic and
climate data underlying population models. We then focus on best practices to model the relationships between vital rates and
climate, highlighting what we can learn from mechanistic and phenomenological models. Finally, we discuss the challenges of
prediction and forecasting in the face of uncertainty about climate-demographic relationships as well as future climate. We con-
clude by suggesting ways forward to build this field of research into one that makes robust forecasts of population persistence,
with opportunities for synthesis across species.

1 | Introduction climate, the challenge of predicting species’ responses to cli-
mate change is ever more urgent. Ecologists are increasingly
Climate is a key limiting factor of the distribution and abun- called upon to predict the fates of local populations and entire

dance of species. With unprecedented and rapid changes to species—are they likely to go extinct if they are currently rare,
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become rare if they are currently common, or become more chal-
lenging management problems if they are pests? Meeting this
challenge requires the ability to project changes in abundance
and distribution in response to changes in key climate drivers.
Such changes ultimately reflect how climate drivers, through
their direct and indirect effects, influence rates of births, indi-
vidual growth and deaths. Thus, population biology provides a
robust framework and tools for predicting the impacts of climate
change on biodiversity.

In principle, characterising population-level responses to cli-
mate appears straightforward. When there is information on
how individual-level vital rates (e.g., survival, growth, reproduc-
tion, also called ‘demographic rates’) are influenced by climate,
we can build environment-dependent demographic models that
explicitly incorporate hypothesised climate drivers. For exam-
ple, matrix or integral projection models can use seasonal tem-
perature or snow melt date as predictors of vital rates, leading
to inference of how climate affects population growth and vi-
ability. Climate-explicit demographic models are thus multiple
models in one: the process model of population dynamics that
describes how individuals move through their life cycle via re-
cruitment, survival, growth and reproduction, and the empir-
ical sub-models that describe how these vital rates depend on
climate drivers, with the latter often in the form of statistical
regressions. With such models, we can project how population
dynamics will change in the face of forecasted climate change
(Fordham et al. 2013; Williams et al. 2015; Iler et al. 2019; Ozgul
et al. 2023; Félix-Burruel et al. 2025; Anderson et al. 2025). In
practice, however, numerous factors related both to the pro-
cesses being modelled and methodological choices turn this
seemingly straightforward approach into a more complex series
of decisions. Here, we explore these decisions and their impli-
cations, and offer practical guidance. We argue that, even amid
emerging challenges, identifying the climate drivers of demog-
raphy is tractable, and building forecasts based on these infer-
ences is necessary and worthwhile.

Environment-dependent demographic models have a long his-
tory in ecology, though until recently, environmental drivers
have typically been modelled implicitly. For example, classic the-
ory for population dynamics in variable environments describes
how a distribution of environmental states affects vital rates and
fitness (Lewontin and Cohen 1969; Tuljapurkar 1989). This clas-
sic theory has led to approaches that provide a useful way to un-
derstand population viability when vital rates fluctuate, without
assigning the cause of fluctuations (Crone et al. 2011; Fowler
et al. 2024). However, while environment-implicit approaches
may be useful to describe population dynamics in a variable but
stationary environment, they are limited in their ability to fore-
cast responses to directional environmental change (Ehrlén and
Morris 2015). Achieving the latter requires a transition from im-
plicit to explicit treatment of environmental drivers, where the
causal effect of climate variables is articulated through statisti-
cal modelling.

Over the last two decades, researchers have started to more
explicitly model environmental drivers of vital rates (Coulson
et al. 2001; Adler and HilleRisLambers 2008; Williams
et al. 2015), a departure from earlier approaches that sought
to decipher climate signals from time series of abundance data

(reviewed in Turchin 2013). Explicit consideration of vital rates,
which have a more direct physiological connection to environ-
mental conditions than abundance, allows one to examine the
demographic mechanisms through which climate variation af-
fects populations, and to identify how climate differentially af-
fects vital rates. Doing so is particularly important given that
covariance between vital rates may buffer or exacerbate the
impact of environmental variation (Doak et al. 2005). Yet even
among studies that employ a bottom-up demographic approach
linking climate to vital rates, competing methods have emerged
in the literature with little consensus around best practices.

Therefore, our aim is to provide a practical guide for fore-
casting population dynamics under climate change through
environment-explicit demographic modelling. We first consider
how empiricists generate or derive data for the underlying com-
ponents of these models: demographic data and hypothesised
climate drivers. We then present an overview of how vital rates
can be linked to climate, highlighting what we can learn about
responses to past, present and future climate from a spectrum
of models ranging from mechanistic to phenomenological. We
also discuss how these models can be used to understand and to
make predictions with respect to climate variation across time
and space. Finally, we dive into the challenges of prediction and
forecasting in the face of uncertainty about current climate-
demography relationships as well as future climate change, and
provide recommendations for ways forward.

2 | What Goes Into a Climate-Explicit
Demographic Model?

2.1 | Demographic Data

Any climate-demography relationship must be defined using
data that captures variation in demographic performance
in parallel with variation in one or more climate variables
that are known or hypothesised to be drivers of demography.
Demographic performance is often measured through direct
observation of individual-level survival, growth, reproduction
and recruitment. For sessile organisms, these data are typically
collected by tagging individuals and following them through
time or, for mobile organisms, through mark-recapture meth-
ods. Vital rates can also be estimated through inverse modelling
from changes in population abundance and structure (Félix-
Burruel et al. 2021; Paniw et al. 2023; Malchow et al. 2023), or
from biogenic time series such as those captured in annual rings
of trees, bivalve shells and fish otoliths (Morrongiello et al. 2012;
Evans et al. 2021). Through any means, demographic data are
time- and labour-intensive to collect. As a consequence, there
is abundant demographic data for relatively few species, usu-
ally only over a few years and in relatively localised areas, and
mostly in temperate zones (Estes et al. 2018; Romer et al. 2024).

A full demographic model accounting for all components of
the life cycle is essential for understanding and then predicting
population dynamics, and maximises insights gained from how
individual vital rates respond to climate drivers. This is because
individual vital rates, as well as the same vital rate at different
life stages or ages, can make different contributions to popula-
tion growth and fitness (quantified by sensitivities or elasticities).
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Individual vital rates may also covary positively or negatively
across environmental gradients due to intrinsic physiological
trade-offs or unique responses to exogenous drivers (Knops
et al. 2007; Compagnoni et al. 2016). For example, negative ef-
fects of warming on survival and recruitment of alpine plants
were compensated for by positive effects on growth (i.e., ‘demo-
graphic compensation’), buffering the decline in fitness across
geographic variation in temperature (Doak and Morris 2010).
For these reasons, the effects of climate on single vital rates may
paint an incomplete and possibly misleading picture about how
changes in climate affect population viability (Iler et al. 2019).
There may be contexts in which it is valuable to focus on the
climate drivers of only one vital rate when vital rate data are not
available for the entire life cycle. For example, long time series
of tree ring widths provide rich insight into climate drivers of
tree growth (Fritts 1976; Clark et al. 2021), but they are typically
not accompanied by information on survival, reproduction and
recruitment, unless sampled in a forest plot-based monitoring
context (Heilman et al. 2022).

2.2 | Climate Data

The climate data that can be linked to vital rates take many
forms, but will generally relate to or derive from temperature and
precipitation. We use ‘climate’ to refer to long-term properties
of temperature and precipitation distributions, such as means,
variances and auto-correlation, as being distinct from ‘weather’,
the short-term realisation of climate. Climate-demography rela-
tionships are typically estimated from weather data during the
approximate times and places of demographic observations. For
most ecological applications, weather data are directly recorded
by instrumentation such as nearby weather stations or on-site
sensors, or interpolated via climate model ‘downscaling’ to gen-
erate inferred weather histories at high spatial and temporal res-
olution. Through the availability of data products like PRISM,
ClimateNA (Wang et al. 2016), CHELSA (Karger et al. 2017)
and WorldClim (Fick and Hijmans 2017), downscaled weather
data are now available for much of the terrestrial biosphere
dating back decades or centuries—an innovation from climate
science that is transforming ecology. Downscaled data capture
regional trends in weather station data, usually located at 2m
height (Wang et al. 2016). However, plants and other sessile or-
ganisms respond directly to the climate they experience near
the ground, which can differ from data collected above 2m due
to buffering from other organisms and differences in wind due
to surface roughness (Scherrer and Korner 2010; Christiansen
et al. 2024). Choosing the spatial scale of weather data relative
to demographic observations is an important step, as fine-scale
microsite conditions may be strongly predictive of demography
but difficult to forecast, while regional conditions may have
robust forecasts but correspond only loosely to the realised en-
vironment of the focal organism; this choice is therefore best in-
formed by the aims of the study.

Whether downscaled or measured locally, weather data typi-
cally come in the form of time series of temperature and precip-
itation that may have a temporal resolution as fine as minutes,
hours, days or months, depending on the source. Demographic
data are usually collected at coarser temporal resolutions,
typically annually (but see Shriver 2016). This mismatch of

temporal scale therefore requires decisions about whether and
how to collapse or aggregate the weather time series to match
the temporal resolution of demographic responses (Figure 1).
Direct summaries include taking the mean, variance or mini-
mum/maximum of temperature or precipitation, which can be
applied annually or seasonally (Figure 1), in addition to using
the duration of time that conditions were below or above certain
climate thresholds (e.g., growing degree days or freezing degree
days). Alternatively, multivariate approaches such as principal
components analysis (PCA) can be used to integrate multiple
climate variables, or the same variable across different time pe-
riods, into fewer axes of variation. When the ultimate goal is to
make future projections, considering what forecasted climate
data are available is essential to choosing which climate vari-
ables to consider. This will be particularly true for demographic
models driven by PCA climate axes when covariance among his-
torical climate variables differs from covariance among future
climate variables (Louthan et al. 2021).

While temperature and precipitation are at the core of most
climate-demography relationships, other, related variables may
be used in climate-demography modelling as potentially more
meaningful indicators of how the focal organisms experience cli-
mate. Derived climate variables such as drought indices, includ-
ing the Palmer Drought Severity Index (PDSI) and Standardised
Precipitation Evapotranspiration Index (SPEI) (Palmer 1965;
Vicente-Serrano et al. 2010), or growing or freezing degree days,
combine several climate variables in ways that may be ecologi-
cally relevant. Some studies focus on environmental ‘indicator
variables’ that are driven by temperature and/or precipitation
but more directly capture their impacts on the focal organism.
Examples include sea ice extent (Jenouvrier et al. 2009), sea
surface temperature (Pardo et al. 2017), soil moisture content
(Matlaga et al. 2024), salinity (Lee et al. 2022), snow depth
(Mignatti et al. 2012) and snowmelt date (Iler et al. 2019). Using
composite or indicator variables may more realistically or di-
rectly capture climate effects (compared to direct measurements
of raw climate variables), even as some composite variables rely
on models that introduce additional assumptions or uncertainty.

2.3 | Capturing Climate Variation With
Demographic Data

Possible approaches for quantifying or generating climate
variation in tandem with demographic data are numerous
(Table 1). In the demography literature, climate variation is
most commonly captured through observational studies rep-
licated across space and/or time, where each location and/
or time period offers a unique climate sample. As with any
observational approach, confounding variables could com-
plicate inference of the causal role of climate. In addition or
alternatively to observational data, variation in climate can
be generated experimentally in the lab or field. For example,
the abundant literature on thermal performance curves is
built on largely laboratory-based manipulations of tempera-
ture, where it is possible to subject organisms to temperatures
more extreme than those they would experience in the field
(Angilletta 2009; Sunday et al. 2012). In the context of pre-
dicting climate change effects on population persistence, lab
experiments that measure effects on multiple vital rates have
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FIGURE1 | Linking multidimensional climate data to model a hypothetical population with an annual demographic census. (A) Mean daily tem-

perature (°C) and (B) Total daily precipitation (mm) across 3years (June 1, 2019—May 31, 2022, Cowichan Garry Oak Preserve, near Duncan, BC,
Canada), with annual demographic census from 1year (N,) to the next (N, +1)- Adults (large circles) can grow and survive and new individuals (small
circles) can be added to the population. Climate variables that drive vital rates might include a short time window (e.g., daily lowest minimum win-
ter temperature, shown in red), a seasonal window (e.g., spring precipitation, shown in blue) or a proxy or indicator variable derived from multiple
climate drivers (e.g., last summer's drought index combines precipitation and temperature, shown in purple). (C) Averages for temperature across
varying intervals shown by horizontal lines: Yearly, monthly or growing season (designated using knowledge of the system or MODIS data) to show

different ways a daily temperature profile might be summarised.

the most utility compared to those that focus only on one vital
rate (Wada et al. 2024). Lab experiments necessarily trade off
rigorous control of abiotic conditions with the realism gained
from experiments manipulating conditions in the field, where
other biotic and abiotic drivers of population dynamics are
present (Anderson and Wadgymar 2020).

In the field, experiments can provide insight into expected future
conditions, including those not represented in long-term data,

and allow for direct manipulation of climate (Table 1). Common
experimental manipulations of climate include warming cham-
bers (Elmendorf et al. 2012; Compagnoni and Adler 2014), snow
removal (Griffith and Loik 2010; Anderson et al. 2025) and rain-
fall manipulation (Levine et al. 2011; Smith et al. 2024). The best
of both worlds, and perhaps the gold standard, would combine
experimental and observational approaches to expand coverage
of abiotic environmental variation and infer causality through
randomised experiments, while using observational data to
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bolster sample sizes and capture natural patterns of variation.
For example, Iler et al. (2019) combined 15years of observa-
tional snowmelt data with snow removal experiments to build
a model of demographic responses to advancing snowmelt in a
Rocky Mountain perennial plant. Despite the difficulty of this
combined approach, and recognising the potential for other driv-
ers of population dynamics to muddle or modulate the climate
driver-vital rate relationships, experimental elements can bol-
ster causal inference.

Variation in vital rates observed across space can be driven
by genetic rather than, or in addition to, environmental differ-
ences. Experiments provide the opportunity to decompose con-
tributions from genetic and environmental factors, although
they may be practical only for sessile or low mobility organ-
isms. Specifically, common garden, transplant and provenance
experiments can reveal how local adaptation modulates de-
mographic responses to climate factors across species’ ranges
(Anderson and Wadgymar 2020; Souther et al. 2022; Anderson
et al. 2025). For example, the universal response function ap-
proach (Chakraborty et al. 2019) estimates how climate affects
the performance of genotypes sourced from different average
climates, although these analyses almost always focus on a sin-
gle performance metric taken at a single time point (e.g., tree
height or stem basal area 20years after trial start). In a recent
example, using a series of common gardens across an eleva-
tional gradient coupled with demographic models, Anderson
et al. (2025) found evidence for strong local adaptation, sup-
ported by stochastic population models, but that most genotypes
were adapted to cooler climates than the ones they currently ex-
perience. Ultimately, even without the ability to conduct such
experiments, it is important to recognise the potential for ge-
netic factors, and local adaptation in particular, to influence the
conclusions drawn from purely spatial observational data.

3 | Linking Climate and Demography

Before building statistical models that link climate and vital
rates, it is helpful to identify hypotheses of when in the life
cycle and demographic census interval climate drivers might
influence vital rates (Figure 1). Such hypotheses narrow the
many possible links between candidate climate drivers and de-
mographic responses. A useful starting point is to draw a life
cycle diagram with vital rates clearly identified (e.g., as in Rees
et al. 2014). Then, with knowledge of the natural history of the
species or related species, the climate of the ecosystem or ecore-
gion, and common performance-limiting factors for the type of
organism (e.g., herbaceous plant, endothermic animal), consider
which climate drivers may be most important and where in the
life cycle their influence may be most acute (Figure 1). Doing so
requires consideration of how to collapse the multi-dimensional
nature of most climate data (multiple variables at high tempo-
ral resolution) and the timing of when climate drivers influence
vital rates. We first consider the selection of climate drivers,
highlighting the distinction between mechanistic and phenom-
enological models, and then consider approaches that can be
used to determine the appropriate timing of climate drivers (see
Table 2 for a range of statistical approaches, with examples, and
Table 3 for possible challenges that may emerge during data col-
lection and model-building, with suggested solutions).

‘When one or a few climate drivers are known to be at the core of the
physiological mechanisms influencing vital rates, this knowledge
can be used in a highly mechanistic way, where the parameters that
relate vital rates to climate drivers derive from physiological pro-
cesses. For example, thermal performance curves, a cornerstone of
thermal ecology, have a characteristic intermediate optimum, often
with left skew—shallow increase in performance with increas-
ing temperature below the optimum and sharp decrease above
(Angilletta 2009), but can also skew right (e.g., in soil moisture-
limited plants (Evans et al. 2025)). Thermal performance curves
are often estimated for one or few vital rates, which can inform
how vital rates may change under future climate change (Nespolo
et al. 2024), recognising that the shape and optimum can evolve
with climate change (Stark et al. 2025). A few studies have gone
further and assembled thermal performance curves for multiple
vital rates into full population models (Armitage and Jones 2019;
Richard et al. 2023; Johnson et al. 2023; Wada et al. 2024) or for
population growth rates directly (Deutsch et al. 2008).

Where one climate driver is hypothesised or known to have tight
links tovital rates, the hypothesised driver can be incorporated into
purely statistical vital rate models that capture the influence in a
phenomenological way (i.e., not derived from physiological mecha-
nisms). Climate-demography studies have used regression models
to capture effects of known or hypothesised driver variables such
as snowmelt date on alpine plants (Iler et al. 2019; Campbell 2019),
sea ice melt date on seabirds (Jenouvrier et al. 2009, 2020), El Nifio
Southern Oscillation index (ENSO) on desert plants (Félix-Burruel
et al. 2021, 2025), and water availability index and growing degree
day on temperate forests (Kunstler et al. 2011, 2021). Estimated
regression coefficients may not have a well-established physiolog-
ical interpretation. Yet, whether intended or not, every statistical
model implicitly corresponds to a biological hypothesis or assump-
tion through the functional form of the model, which is why even
‘phenomenological’ models include elements of mechanism. For
example, including a climate driver as a simple first-order regres-
sion covariate assumes the response is strictly linearly increasing
or decreasing with respect to the climate driver, which may not
be physiologically sensible, depending on the range of measure-
ment and projection. In the context of linear models, incorporat-
ing climate drivers with second-order terms accommodates the
possibility of non-monotonic responses, when sufficient data are
available. For example, demographic response to variation in tem-
perature or precipitation is commonly modelled as a second-order
polynomial (Miller and Compagnoni 2022; Malchow et al. 2023),
allowing for intermediate optima that mirror a first-principles
physiological expectation (e.g., thermal performance curve).
Alternatively, generalised additive models using spline basis func-
tions or various machine learning methods may allow the data to
guide the specific form of climate dependence without requiring
a priori assumptions (Teller et al. 2016; Tenhumberg et al. 2018;
Hindle et al. 2019; Pichler and Hartig 2023). Ultimately, the choice
of statistical model (Table 2) requires consideration of the study
goals (e.g., understanding or forecasting), and not only sufficient
data, but also care in determining whether the functional form is
biologically sensible, particularly when the goal is forecasting be-
yond the range of observations and into future climate conditions
(Figure 3).

Where several climate drivers are thought to be candidates,
statistics can help guide selection among a suite of candidate
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TABLE 3
data to running and interpreting models.

| Tips and tricks for getting started with climate-demography modelling. Challenges are ordered in the table from system and climate

Challenge

Potential solutions with example(s) and resources

Sites and years have a lot of
background variation that isn't
climate driven, as far as I can tell.

I don't have climate data for my
site(s). Should I use a downscaled
climate product or a local weather
station? For the latter, how far is too
far?

Too many available climate
variables, and many are highly
correlated

Interpreting lagged and dormant
season contributions of climate
variables

What if I only have good vital rate
data for some life stages?

Is it okay for me to use space for time
substitution? I have really limited
temporal data, but I have some
spatial replication.

I suspect my population is subject to
density dependence.

Models don't converge because
climate variables are measured on
vastly different scales (e.g., mean
seasonal temp and total seasonal
precipitation)

Computing power demands for
geographic forecasts with IPMs are
very high

Interactions: among climate
variables and/or between climate
variables and size/stage

With enough replication, random effects can isolate site or year variation
due to climate versus background spatial or temporal heterogeneity.
If not, climate coefficient estimates will have a lot of error, and that
may be okay as long as that uncertainty is propagated forward

First consider the study goal. For inference, proximity to a weather station is most
important in topographically complex landscapes and microclimate data can improve
inference (Christiansen et al. 2024). Downscaled climate data will also work fine. For

prediction, ensure that climate projection data are downscaled in the same way.

Identify those that are more supported by the literature as drivers of vital rates and

population dynamics (use a priori/natural history knowledge (Lindell et al. 2022)),

and/or identify groups of interchangeable climate variables (due to collinearity) and
choose a representative variable from each group. Alternatively, use a PCA to create a
synthetic driver or two, with the caution that it's harder to forecast to future climates

Include lagged and dormant season climate in model selection (Tenhumberg et al. 2018;
Evers et al. 2021, 2023; Anderson 2023). When interpreting, consider: do contributions
make sense? Have a biological explanation? Are there potential indirect effects?

This is a common challenge for building demographic models, particularly for cryptic
life stages, and not unique to making connections to climate. Possible solutions
include trying a range of sensible values (Metcalf et al. 2008), using estimates from
congeners (Moutouama et al. 2025) or using inverse estimation (Gonzalez et al. 2016).

Be aware that climate-demography relationships estimated across space can be the
opposite of climate-demography relationships across time (Perret et al. 2024; Evans
et al. 2024). Think carefully about the assumptions of space for time substitution
(Lovell et al. 2023, SFTS; Kharouba and Williams 2024) and consider whether climate-
demography relationships should be aligned across space vs. time in your study
species or group (same in sign, allowing SFTS) versus not. Go forward with caution!

Fit density-dependent models using the best data you have (e.g., total population
numbers; spatially explicit individual locations) (Dahlgren et al. 2016; Chu et al. 2016),
include density X climate interactions where possible (Ehrlén and Morris 2015).

Standardise your variables (Schielzeth 2010) and if needed, investigate other solutions
for model convergence (Harrison et al. 2018). Alternatively, use composite variables (e.g.,
drought indices) or PCA, with the caution that it is harder to forecast to future climates

Not insurmountable, but worth considering in advance how to overcome,
could include making code more efficient, working on a super computer/
cluster (parallelisation, e.g., R package ‘parallel’), and/or decreasing granularity
of geographic space (larger pixels) or the IPM (lower-dimension matrix).

For interactions between climate variables, could instead use PCA to collapse
climate variables or an index that collapses them (e.g., drought index). For
climate X size interactions, ask whether they are statistically supported and do
the interactions make sense (Tredennick et al. 2018). Cautionary note: may need
a lot of data to find statistical support for interactions (Gelman et al. 2020).

drivers. For example, Dalgleish et al. (2011) constrained their set
of climate predictors of vital rates in grassland perennial plants
to climate variables from the current or previous growing season
that were significantly correlated with random effects of year
derived from mixed effects models, and then used AIC model
selection on this subset of climate predictors to choose the best-
supported model. The choice of model selection criteria may

be best guided by the aims of the study, as out-of-sample per-
formance metrics such as root mean square error (RMSE) may
be more relevant than AIC for forecasting applications (Félix-
Burruel et al. 2025). In another example, Ozgul et al. (2023)
constrained their analyses for modelling the effects of climate
change on grey mouse lemurs in Madagascar to six seasonal cli-
mate variables, for example, choosing maximum temperature

Ecology Letters, 2025
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instead of mean temperature, because the maximum has
changed far more than the mean in the past 25years. This exam-
ple highlights an alternative way to select climate drivers: rather
than focusing on biological responses, starting with historical
or projected climate change may point to dimensions of climate
that are changing most rapidly, and would therefore be a natural
focus for forecasting. On the other hand, the strongest aspects of
climate change may not be the most important climate drivers of
demography (Czachura and Miller 2020).

After choosing a set of candidate climate drivers, one must
consider the time window over which each might be most
important, both in terms of the duration (e.g., month vs. sea-
son vs. year) and whether the time window coincides with or
lags the window of demographic observation. For duration, a
climate driver might be important over a very short time win-
dow, such as a critical winter low temperature below which an
organism cannot survive (Tanner et al. 2017; Lancaster and
Humphreys 2020; Kang et al. 2025) versus integrated over an
entire season or census interval. A vital rate might be influenced
by a climate driver in the current census interval, or the effect of
the climate drivers might be lagged. For example, growth from
time ¢ to t+1 (i.e., 1year later) might be influenced by precipi-
tation and/or temperature in t-1; such lagged effects have been
documented across a range of plant and animal species (Iler
et al. 2019; Chen et al. 2020; Evers et al. 2021; Karunarathna
et al. 2024). For organisms that alternate between growing and
dormant seasons (e.g., perennial herbaceous plants going dor-
mant in winter or hibernating mammals), evidence supports
that climate during the dormant season can be an important
contributor to vital rates (Paniw et al. 2019; Evers et al. 2021;
Ogilvie and CaraDonna 2022; Nespolo et al. 2024), even if the
precise mechanism is not known.

Rigorously modelling the influence of climate drivers may re-
quire consideration of more nuanced aspects of timing, beyond
the presence or absence of lags. Given that climate data are
typically available on a finer time scale than demographic data
(Figure 1), a candidate climate driver can be represented as a time
series leading up to the demographic census (e.g., daily, weekly
or monthly precipitation over the year preceding flowering or
breeding). The question then becomes: when during this his-
tory did the climate driver most strongly influence demographic
outcomes? This question can be answered through temporal
weighting of weather history, which assigns greater weights to
periods of high influence. Weights may be defined ‘by hand’ if
expert knowledge or insights from a climate-demography life
cycle diagram (Figure 1) pinpoint the critical periods of influ-
ence (Hindle et al. 2019). More commonly, weights will need to
be ‘learned’ from data through statistical inference.

Several approaches have been recently developed for inferring
the temporal weighting of weather history from data (Table 2).
Sliding window approaches such as ClimWin (van de Pol
et al. 2016) use model selection criteria to compete many can-
didate models that differ in the timing and duration of tempera-
ture and precipitation effects on demographic responses. For
example, using this approach, Lv et al. (2023) identified cold
temperatures over a two-week period in the non-breeding sea-
son of a passerine bird as the main driver of decreased survival.
Stochastic antecedent modelling (SAM), typically implemented

in a Bayesian framework, estimates weights associated with
each climate window preceding the observed response, thus ex-
plicitly incorporating lags and quantifying ecological ‘memory’
as part of model fitting (Ogle et al. 2015, Compagnoni et al. 2024).
Unlike sliding windows, in which the influence of the climate
covariate is turned ‘on’ (within the window) or ‘off” (outside the
window), SAM allows the weight of each time window to vary
continuously and can therefore detect greater subtleties in cli-
mate influences. Peltier et al. (2018) used SAM to model climate
drivers of tree growth (annual ring width), showing that tem-
poral weights of climate covariates were concentrated during
the year immediately preceding ring formation, with a weaker
signal of drought conditions 2-4years prior. Finally, functional
linear modelling (FLM) is conceptually similar to SAM but tem-
poral weighting is derived from a smooth spline function that
treats time continuously rather than as discrete windows (Teller
et al. 2016; Tenhumberg et al. 2018). Hindle et al. (2019) found
that FLM had better predictive performance for Soay sheep de-
mography than choosing critical windows of climate influence
a priori, but was no better than a simple, seasonally aggregated
composite variable (winter North Atlantic Oscillation). Yet an-
other approach to explore climate effects within census intervals
is a model that accommodates demographic and climate data
at different temporal resolutions, such as a Cox proportional
hazards model (also known as survival analysis), which can
estimate the impact of daily weather on annual plant survival
(Tomasek et al. 2019) or multi-year tree survival as a function of
annual weather (Fortin et al. 2025).

These competing approaches for the timing of climate driver
effects have distinct advantages and disadvantages (Table 2).
Proportional hazard models are useful for weather events that
occur between census intervals, but are less suited to accounting
for long lags. Sliding windows are easy to implement and highly
flexible for exploring all sorts of timing and lags, but the results
may be difficult to interpret and sensitive to spurious correla-
tions. SAM and FLM may be a useful intermediate, capable of
detecting subtle features of timing and less likely to return hard-
to-interpret time windows of climate sensitivity.

4 | Using a Climate-Demography Model

Once climate-demography relationships have been statisti-
cally defined at the level of vital rate sub-models, the next step
is using a population model to make inferences about how
climate drivers influence population viability under observed
conditions (i.e., understanding), or to make forecasts for pop-
ulation- or species-level effects of climate change (i.e., predict-
ing). What it means to ‘use the model’ will vary widely across
applications. For the purposes of studying population viability
in the context of climate change, key outputs will commonly
include—but are not limited to—the asymptotic population
growth rate A or, when temporal variability is incorporated
(due to climate variability and/or ‘background’ fluctuations),
the stochastic growth rate 1. Here we discuss key consider-
ations related to validation, inference and prediction for the
different types of model outputs.

Just as climate-demography relationships are typically in-
ferred from spatial or temporal environmental variation, a
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e Inverse estimation

Climate data

e  Temperature, precipitation
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Map climate onto life cycle

Reduce climate dimensionality to align with demography
Mechanistic or phenomenological vital rate models
Time lags and antecedent effects

!

—

Temporal mSing the mOdGI\ Spatial or
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Year

Past projection e  Extrapolate carefully spatio- Current Future
(forecast or e Incorporate uncertainty temporal
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FIGURE2 | Visual summary of steps to link climate to demography from collecting the data to using the model.

fully parameterised climate-explicit demographic model can
be projected across space and/or through time (Figure 2).
Temporal projection can go in both directions, informing how
population viability has responded to historical environmen-
tal change (‘back-casting’, e.g., Smith et al. 2005; Czachura and
Miller 2020) or will respond to future change (classic forecasting,
e.g., Jenouvrier et al. 2009). Spatial projections can inform suit-
able niche space across a geographic range (4 or 14> 1) (Merow
et al. 2017; Pagel et al. 2020; Schultz et al. 2022; Sen et al. 2024)
and can be combined with temporal dynamics to backcast or
forecast geographic shifts in suitable niche space (Malchow
et al. 2023; Moutouama et al. 2025). Moutouama et al. (2025)
used climate-demography relationships derived from geograph-
ically distributed common garden experiments to forecast likely
poleward range shifts of Texas grasses. In the spatial and spa-
tiotemporal dimensions, climate-explicit demographic models
can function as a more mechanistic alternative to species dis-
tribution models (Merow et al. 2017), quantifying potential for
range shifts under future climate conditions based on lower-
level mechanisms of vital rate responses to the environment and
without requiring assumptions about range equilibria (Evans
et al. 2016; Briscoe et al. 2019). However, it is important to rec-
ognise the assumptions required to scale up models intended for
local population dynamics to predict the dynamics across en-
tire species’ ranges, particularly regarding genetic variation and
landscape-scale processes such as disturbance, dispersal and
connectivity (Adler et al. 2020).

Ecologists have long relied on the assumed interchangeability
of spatial and temporal environmental variation (i.e., space-
for-time substitution, (Lovell et al. 2023)). This would imply,
for example, that climate-demography relationships derived
from long-term data from one population could predict spatial

demographic variation across the species’ geographic range,
and vice versa. Recent work highlights that this assumption of
substitutability can be strongly misleading in practice (Perret
et al. 2024; Evans et al. 2024; Kharouba and Williams 2024).
Central among the reasons for this is local adaptation, which
may alter the climate optima or tolerance breadth of differ-
ent populations and make inference from spatial sampling a
poor proxy for local response to climate change through time,
and vice versa (Perret et al. 2024). Other biotic lags (‘slow’
processes like colonisation and extinction) can similarly
cause inferences derived from spatial and temporal data to
diverge (Adler et al. 2020; Stemkovski et al. 2025). Climate-
demography modelling will generally be on firmer ground
when the dimension of model projection (spatial or temporal)
aligns with the dimension of climate variation over which the
model is parameterised. Where demographers have spatiotem-
poral data to infer climate responses, a useful diagnostic is
to check whether purely spatial (e.g., among populations in a
single year) versus purely temporal (e.g., among years within a
single population) climate responses are similar in magnitude
and direction. In some cases, such diagnostics may indicate
that spatial and temporal estimates are effectively substitut-
able, such as for emperor penguins, where both spatial and
temporal variation shared the same climate driver of under-
lying vital rates with matching magnitude and direction (Sen
et al. 2025). More research is needed to better understand and
anticipate the species and settings in which the effects of spa-
tial and temporal climate variation on demography can versus
cannot be treated as substitutable.

Even when model parameterisation and projection are aligned
in space or time, the domain of projection will often include en-
vironmental conditions that are poorly represented or entirely
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unrepresented in the parameterisation data. This is especially
true for predicting responses to future climate, which for many
regions will likely include conditions with no present-day an-
alogue (Feng et al. 2024). In such cases there are several ways
in which vital rate models could be extrapolated beyond the
bounds of observed conditions (Figure 3). First, naive extrapola-
tion beyond observed limits of a climate variable is one option,
but it is important to visualise the extrapolated predictions to
ensure they are biologically sensible (Owens et al. 2013; Conn
et al. 2015). Linear models with log-link functions or higher-
order polynomial terms, for example, can lead to wildly unre-
alistic predictions just beyond the limits of observed conditions.
A more conservative approach would place upper and/or lower
limits on vital rate functions, analogous to ‘clamping’ in species
distribution models (Anderson 2013; Beck et al. 2023), so they
cannot exceed the response at the most extreme observed val-
ues of the climate driver (Louthan et al. 2022). Alternatively,
physiological principles may dictate how vital rates will respond
beyond observed conditions. For example, a vital rate may in-
crease monotonically with increasing temperature over some
observed range but physiological principles tell us that the ef-
fects of increasing temperature must eventually become nega-
tive (Figure 3A).

Experiments provide opportunities to create no-analogue
combinations of climate variables as a way to bridge the gap
between current and future climate (figure 3B; Stevens and
Latimer 2015; Kiekebusch et al. 2024), or to examine changes
in climate variability along with changes in mean climate
(Rudgers et al. 2023). Finally, some of the most ecologically
important types of climate change involve changes in the
frequency of extreme events, such as droughts or hurricanes,
rather than shifts in the mean or range of climate values.
Through biassed re-sampling of observed conditions, it is pos-
sible to model changes in the frequency of extreme states such
as drought years (Williams et al. 2015) or low sea ice years
(Hunter et al. 2010), even without a mechanistic understand-
ing of the effects of extreme conditions on vital rates (Morris
and Doak 2002; Fowler et al. 2024). Re-sampling observed
years has the advantages of entirely avoiding extrapolation
while preserving correlations between vital rates without hav-
ing to model them explicitly (Metcalf et al. 2015), which can be
challenging (Compagnoni et al. 2016).

Given the central aim of predicting responses to climate
change, it is important to validate climate-explicit models to
gain confidence that they make reasonable predictions. Model
‘validation’ takes on a double meaning for climate-explicit
demographic models, because both the population model and
the sub-models describing how vital rates depend on climate
require validation. The vital rate sub-models (Table 2) should
be evaluated for their predictive accuracy, ideally both in and
out of sample, when possible (Tredennick et al. 2017; Harris
et al. 2018). Fitted statistical models are generative, and can
and should be used to simulate data for comparison with real
data; this is a standard in-sample diagnostic step of a Bayesian
workflow (i.e., ‘posterior predictive checks’) but is not limited
to Bayesian analysis (Miller and Ellner 2025). At the level
of the population model, predictions like the one-time-step-
ahead growth rate given recent weather conditions or climate

A) Experiments not possible

1. Statistical
extrapolation

2
o 2. Conservative
o | @ bound
£
> 26 © e 3. “Physiological
b extrapolation”
Temperature

B) Option 1: simulate forecasted conditions with
experiments combined with observations

Vital rate

Temperature

C) Option 2: biased re-sampling of observed conditions

A (observed) ) (increase freq of ‘bad’ years)

FIGURE 3 | Making predictions for demographic and population
growth rate(s) under future climate change scenarios. Generic vital rate
shown as a function of temperature. (A) Where experiments are not pos-
sible, extrapolation to forecasted temperature can take several forms:
statistical extrapolation, which follows the functional form of the statis-
tical model; conservative bound—a threshold set based on some a priori
knowledge; a physiological extrapolation based on expected responses
to climate extreme. (B) Experimental manipulations can be combined
with ambient climatevariation from spatial or temporal sampling to
bridge the gap between observed and forecasted conditions. (C) Biassed
re-sampling of observed conditions can examine the consequences of
changing frequency of environmental extremes, even if climate and
physiological mechanisms of ‘bad’ years are not known.

niche suitability across geographic space could be evaluated
against independent observations to assess model adequacy.
For example, Moutouama et al. (2025) found that model pre-
dictions of climate niche suitability (where 4 > 1) compared fa-
vourably to independent occurrence records. However, other
studies have found that demographic responses to climate are
poor predictors of species' occurrence (Lee-Yaw et al. 2022;
Schultz et al. 2022; Sen et al. 2024). Diagnosing the causes
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of poor validation metrics—for example, whether mismatches
between predicted and observed occurrence reflect a statisti-
cal issue (model mis-specification) or a biologically interest-
ing process (non-equilibrium dynamics, other influences on
species’ occurrence such as biotic interactions or disturbance)
may itself be a substantial undertaking. The recurring, longi-
tudinal nature of much demographic research lends itself to
iterative near-term forecasting (Dietze et al. 2018), providing
an opportunity to train and improve vital rate and population
models against an ever-changing backdrop of climate drivers.

Successful validation can bolster confidence in meaningful
prediction but, to keep expectations realistic, it is worth con-
sidering which predictive targets might be more appropriate
and achievable than others. 1 and A4 are ‘asymptotic’ metrics
(predicting the long-term behaviour of a population assuming
environmental conditions are stationary), and may be useful
indicators of directional responses to environmental change
(Lindell et al. 2022) or the potential for population viability
(A>1) under a given set of conditions (Diez et al. 2014). The
overall sensitivity of 4 (or 4¢) to a climate driver reflects the
combined sensitivities of A (or 4¢) to the vital rates and the
sensitivities of the vital rates to the climate driver (McLean
et al. 2016). Decomposing these sensitivities through Life
Table Response Experiments (Caswell 2001) can neverthe-
less provide rich insight into how and why population viabil-
ity responds to environmental drivers, at least over observed
conditions (Maldonado-Chaparro et al. 2018; Iler et al. 2019;
Schultz et al. 2022). Doing so also illustrates the importance
of integrating climate effects across the life cycle, as vital rates
with high sensitivity to climate may contribute weakly to
population growth, or vice versa. Beyond asymptotic metrics,
near-term measures, such as transient growth rates and sen-
sitivities (Maldonado-Chaparro et al. 2018) or population size
or extinction risk over some forecast horizon (Félix-Burruel
et al. 2025), could be more meaningful and tractable targets
for prediction, as climate change is creating non-stationary
environmental variation (shifts in mean and/or variance) for
many populations and species. Historically, population pro-
jection models do not have a stellar record of predictive accu-
racy (Crone et al. 2013); as climate-demography case studies
accumulate, it will be interesting to see if the inclusion of
important climate drivers helps to increase model skill and
predictive accuracy.

As is always the case in ecological forecasting, accounting for
uncertainty is an important part of prediction and should be
standard practice in climate-demography forecasts. Uncertainty
arises from model uncertainty, parameter estimation and back-
ground ‘process error’ (e.g., year-to-year and site-to-site differ-
ences that are not explained by climate), among other sources
(Dietze 2017). Even with high confidence in parameter esti-
mates for climate-demography relationships, process error
can contribute substantial uncertainty to ecological forecasts
(Czachura and Miller 2020). Bayesian analysis is a common way
to incorporate uncertainty in climate-demography contexts: be-
cause a function of a random variable is itself a random variable,
posterior probability distributions of vital rates can be naturally
propagated into posterior distributions of quantities derived
from the vital rates, such as population growth rate or extinc-
tion risk (Elderd and Miller 2016; Iler et al. 2019). Bootstrapping

is a non-Bayesian alternative that can similarly quantify uncer-
tainty (Larios et al. 2020). Finally, uncertainty about the future
derives not only from climate-demography models, but also
(and perhaps mainly!) from the climate change forecast itself.
Few studies have incorporated uncertainty in the climate fore-
cast alongside uncertainty in demographic responses to climate
drivers (Gauthier et al. 2016; Heilman et al. 2022; Jenouvrier
et al. 2025). Some of those studies suggest that the variability
among the Global Climate Models (GCMs) in climate forecasts
dwarfs the uncertainty associated with population responses to
climate (Louthan et al. 2022).

5 | Where Do We Go From Here?

Despite the myriad decisions and potential challenges described
above, we encourage researchers to forge ahead as we urgently
need better projections for the effects of climate change on
biodiversity. This includes working with the demographic and
climate data currently in hand, while considering how to supple-
ment with experiments, and starting studies with new species
of concern. Here we offer some general guidance for climate-
demography modelling, as well as a few cautionary notes, then
conclude with recommendations for ways to move the field
forward.

1. Best practices for identifying hypothesised cli-
mate drivers that link to demography. Overall, the
particular climate variables to use will depend on the
goal of the study (see Table 3 for more tips for getting
started). For studies with the aim of forecasting, select-
ing climate variables that are used in Global Circulation
Models for future climate will be valuable. For studies
aimed at understanding climate drivers of local popula-
tions, microclimate or local weather data should provide
the strongest inference. To quantify how anomalous a
climate driver is across years for a particular study sys-
tem, climate drivers can be scaled by a historical mean
and standard deviation for each study location. Doing so
serves two purposes. First, it is good practice to put cli-
mate drivers on the same scale in their interactions with
vital rates (Schielzeth 2010). Second, we see an opportu-
nity to compare, with caution, coefficients of climate sen-
sitivities for different vital rates across climate drivers as
well as across studies to ask questions across taxa about
how the sensitivities of vital rates to climate vary in time
and space. Caution is necessary because, depending on
the research question, absolute climate sensitivities may
be more meaningful; for example, when comparing re-
sponses of plants to drought across sites that vary dra-
matically in baseline precipitation, scaled climate drivers
may be less informative. Finally, when possible, validat-
ing models, ideally with out-of-sample data, allows for
estimating how well predictions perform, thus increas-
ing the robustness of conclusions, particularly when de-
cision making hinges on the results (Yates et al. 2023).

2. Climate drivers can interact with other drivers of
demography. While here we have argued for the utility
and urgency of determining the demographic effects of
climate drivers, climate can of course interact with other
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drivers, including but not limited to biotic interactions
and disturbances (Suttle et al. 2007; Chu et al. 2016;
Louthan et al. 2022). Since such interactions can modify
the effects of climate on demography, knowing the nat-
ural history of a system and quantifying the effects of
other drivers where possible is important. At the same
time, when it is not possible to quantify non-climatic
drivers, researchers can proceed, while taking caution
when interpreting results. Even when the overall current
trends, for example, population dynamics, are well de-
scribed, the underlying mechanisms that led to a statisti-
cally supported link between climate and vital rates may
be incorrectly identified, which would limit our ability to
predict future population dynamics when relationships
with non-climatic drivers change.

3. Check for physiological sensibility. All model builders
need to consider whether the models they are fitting for
vital rates are physiologically sensible. This consideration
is critical regardless of how much data or prior knowledge
one might have for the link between physiology and cli-
mate. This link is explicitly built in for more mechanis-
tic models, but lacking for purely statistical approaches,
which can include climate responses that are overly sim-
plistic (e.g., unbounded linear functions from univariate
regressions) or overly complicated (e.g., step functions
from machine learning algorithms). When more phenom-
enological models are used for forecasting, this will mean
considering, for example, what happens when the model
extrapolates to more extreme conditions and using data
and common sense to determine if the extrapolation is sen-
sible (Figure 3A).

4. Avoid fishing expeditions while staying open to unex-
pected results. For many researchers, the steps of choos-
ing candidate climate driver(s) and how they are integrated
across which seasons and with which lags could be daunt-
ing. Despite the challenges, we caution researchers to avoid
‘fishing expeditions’, such as comparing all possible models
(which could number in the hundreds or thousands) with
a model selection approach. On the flip side, we encourage
researchers to wield their prior knowledge with humility;
that is to allow themselves to be surprised by unanticipated
connections, thus opening up new hypotheses to evaluate.
One way to balance these considerations is to use the cli-
mate—Ilife cycle diagram approach (Figure 1) to guide the
exploration of biologically reasonable possibilities.

Among all the idiosyncrasies in how populations and species
respond to climate and in how ecologists construct models that
link climate to population dynamics, we urge researchers to
seize the opportunities to make this field more synthetic and
comparative. One initial way forward is to build vital rate mod-
els with standardised climate variables, and then in population
models, compare sensitivities of vital rates to changes in climate,
and finally to compare sensitivities to climate across taxa. Effects
of climate change are predicted to be larger when climate sen-
sitivities align with the vital rates that are most strongly drivng
population dynamics (McLean et al. 2016), such as survival and
growth of long-lived species and those on the slow end of the
life history continuum. We can evaluate this prediction (and
the converse, that species with fast life histories should respond
more strongly to climate change when climate drivers have the

largest effects on reproduction) drawing on data from across
taxa. Comparative demography is already a well-developed field
(Franco and Silvertown 2004; Salguero-Gomez et al. 2016); we
see an opportunity to extend the success of comparative demog-
raphy to comparative climate-demography.

A next step is to ask questions about tipping points at which
populations will become critically and negatively affected by cli-
mate change, for example, temperatures where 1,<1 (Doak and
Morris 2010). Tipping points can be identified from phenome-
nological or mechanistic models, and may result from a nonlin-
ear relationship between one vital rate and a climate variable, or
where demographic compensation among vital rates is insuffi-
cient to maintain 4>1. Next questions include: How common
are tipping points and at what level of climate anomaly do they
occur? Are tipping points stronger with respect to temperature
versus precipitation and how does that vary by biome? Are
certain vital rates more likely to be involved in tipping points
and/or demographic compensation? Do certain vital rates tend
to be impacted ‘first’ (with less extreme climates) than others,
and does that relate to life history? Due to selection, vital rates
with low variability tend to have the largest eigenvalue elastic-
ities (Pfister 1998), suggesting that those vital rates should be
first to respond, but as historical conditions are left behind, does
this relationship hold? Although we may not yet have the data,
and recognise that identifying tipping points may sometimes be
elusive (Hillebrand et al. 2020), we can work toward answers to
these questions that will inform our predictions not only for well-
studied species, but also for populations and species for which
we have sparse to no data.

Another way forward for synthesis studies is with a focus on
linking physiology to demography to population models, a
realm where we lack theory beyond that surrounding thermal
performance curves. We need to know how and whether phys-
iological expectations for vital rate responses to environmental
indicator variables (e.g., thermal performance curves, growing
degree days based on microclimatic measurements) perform
better than predictors such as temperature and precipitation for
making forecasts. Even within a population, individuals may
have different thermal performance curves (Stark et al. 2025),
leading to the question and drawing on the literature of in-
dividual heterogeneity in demography (Kendall et al. 2011;
Vindenes and Langangen 2015), do individuals within the same
population have different responses to climate? And if so, how
much does that affect population and species-level responses to
changes in climate? Clearly, genetic variation is one source of
individual heterogeneity, which sets the stage for evolutionary
rescue to result in different outcomes than might be predicted
by a purely ecological forecast (Olazcuaga et al. 2023). Finally,
although we are beginning to accumulate studies demonstrat-
ing that microsite conditions can be important drivers of popu-
lation dynamics (Oldfather and Ackerly 2019; Ray et al. 2023),
in general, we do not yet know how site and microsite condi-
tions might mediate or exacerbate the effects of climatic anom-
alies (Nicolé et al. 2011).

In sum, we see a new synthetic field just beginning to develop that
will identify where to expect strong links between climate driv-
ers of populations and species, and thus where to expect strong
effects of the rapidly changing climate. As this field develops,
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we encourage researchers to make predictions for how climate
change will affect species of concern. The most robust predic-
tions will come from models that are validated and quantify
sources of uncertainty. We remain optimistic that collectively
these contributions will lead to not only better understanding
and prediction, but more effective management strategies to
mitigate the effects of climate change on biodiversity.
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